Properties

Label 2-300-12.11-c1-0-6
Degree $2$
Conductor $300$
Sign $-0.912 - 0.408i$
Analytic cond. $2.39551$
Root an. cond. $1.54774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.599 + 1.28i)2-s + (0.468 + 1.66i)3-s + (−1.28 + 1.53i)4-s + (−1.85 + 1.59i)6-s + 0.936i·7-s + (−2.73 − 0.719i)8-s + (−2.56 + 1.56i)9-s + 4.27·11-s + (−3.16 − 1.41i)12-s − 3.12·13-s + (−1.19 + 0.561i)14-s + (−0.719 − 3.93i)16-s − 2i·17-s + (−3.53 − 2.34i)18-s + 4.27i·19-s + ⋯
L(s)  = 1  + (0.424 + 0.905i)2-s + (0.270 + 0.962i)3-s + (−0.640 + 0.768i)4-s + (−0.757 + 0.653i)6-s + 0.353i·7-s + (−0.967 − 0.254i)8-s + (−0.853 + 0.520i)9-s + 1.28·11-s + (−0.912 − 0.408i)12-s − 0.866·13-s + (−0.320 + 0.150i)14-s + (−0.179 − 0.983i)16-s − 0.485i·17-s + (−0.833 − 0.552i)18-s + 0.979i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.912 - 0.408i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.912 - 0.408i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $-0.912 - 0.408i$
Analytic conductor: \(2.39551\)
Root analytic conductor: \(1.54774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{300} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 300,\ (\ :1/2),\ -0.912 - 0.408i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.322564 + 1.50865i\)
\(L(\frac12)\) \(\approx\) \(0.322564 + 1.50865i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.599 - 1.28i)T \)
3 \( 1 + (-0.468 - 1.66i)T \)
5 \( 1 \)
good7 \( 1 - 0.936iT - 7T^{2} \)
11 \( 1 - 4.27T + 11T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
17 \( 1 + 2iT - 17T^{2} \)
19 \( 1 - 4.27iT - 19T^{2} \)
23 \( 1 - 7.60T + 23T^{2} \)
29 \( 1 + 5.12iT - 29T^{2} \)
31 \( 1 - 2.39iT - 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 - 7.12iT - 41T^{2} \)
43 \( 1 - 1.46iT - 43T^{2} \)
47 \( 1 + 0.936T + 47T^{2} \)
53 \( 1 + 4.24iT - 53T^{2} \)
59 \( 1 - 7.19T + 59T^{2} \)
61 \( 1 + 5.12T + 61T^{2} \)
67 \( 1 - 5.20iT - 67T^{2} \)
71 \( 1 + 6.67T + 71T^{2} \)
73 \( 1 - 8.24T + 73T^{2} \)
79 \( 1 + 9.06iT - 79T^{2} \)
83 \( 1 + 4.68T + 83T^{2} \)
89 \( 1 + 6.24iT - 89T^{2} \)
97 \( 1 - 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.12764167978280654515811177536, −11.40038525077060349283111084078, −9.900665557533711259419073194819, −9.241695430907347409749615747277, −8.411590393392659239737778043016, −7.27150643198848724146627923729, −6.11534148820643516121561489640, −5.05193064724565745811613278584, −4.13857923000341105035196113773, −2.95329091601968759064014084546, 1.07712393993001698090376670091, 2.52318802995770322804562207815, 3.78031368100233113485143075041, 5.12080329401952024716331123853, 6.46110575297323141700411624909, 7.29302970223211834061978374573, 8.806639932437364156285032282824, 9.340433563600901625255114221810, 10.69059956106067348883884219570, 11.52424961294030993524189531197

Graph of the $Z$-function along the critical line