Properties

Label 2-300-1.1-c3-0-6
Degree $2$
Conductor $300$
Sign $-1$
Analytic cond. $17.7005$
Root an. cond. $4.20720$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7·7-s + 9·9-s − 54·11-s + 55·13-s − 18·17-s − 25·19-s − 21·21-s + 18·23-s − 27·27-s − 54·29-s − 271·31-s + 162·33-s − 314·37-s − 165·39-s − 360·41-s + 163·43-s − 522·47-s − 294·49-s + 54·51-s + 36·53-s + 75·57-s + 126·59-s + 47·61-s + 63·63-s + 343·67-s − 54·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 1.48·11-s + 1.17·13-s − 0.256·17-s − 0.301·19-s − 0.218·21-s + 0.163·23-s − 0.192·27-s − 0.345·29-s − 1.57·31-s + 0.854·33-s − 1.39·37-s − 0.677·39-s − 1.37·41-s + 0.578·43-s − 1.62·47-s − 6/7·49-s + 0.148·51-s + 0.0933·53-s + 0.174·57-s + 0.278·59-s + 0.0986·61-s + 0.125·63-s + 0.625·67-s − 0.0942·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(300\)    =    \(2^{2} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(17.7005\)
Root analytic conductor: \(4.20720\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 300,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 - p T + p^{3} T^{2} \)
11 \( 1 + 54 T + p^{3} T^{2} \)
13 \( 1 - 55 T + p^{3} T^{2} \)
17 \( 1 + 18 T + p^{3} T^{2} \)
19 \( 1 + 25 T + p^{3} T^{2} \)
23 \( 1 - 18 T + p^{3} T^{2} \)
29 \( 1 + 54 T + p^{3} T^{2} \)
31 \( 1 + 271 T + p^{3} T^{2} \)
37 \( 1 + 314 T + p^{3} T^{2} \)
41 \( 1 + 360 T + p^{3} T^{2} \)
43 \( 1 - 163 T + p^{3} T^{2} \)
47 \( 1 + 522 T + p^{3} T^{2} \)
53 \( 1 - 36 T + p^{3} T^{2} \)
59 \( 1 - 126 T + p^{3} T^{2} \)
61 \( 1 - 47 T + p^{3} T^{2} \)
67 \( 1 - 343 T + p^{3} T^{2} \)
71 \( 1 + 1080 T + p^{3} T^{2} \)
73 \( 1 - 1054 T + p^{3} T^{2} \)
79 \( 1 + 568 T + p^{3} T^{2} \)
83 \( 1 + 1422 T + p^{3} T^{2} \)
89 \( 1 - 1440 T + p^{3} T^{2} \)
97 \( 1 - 439 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88077040247756589829471580466, −10.18263077548424889544170126357, −8.841016450479790414705282170216, −7.960610173605848451664836178499, −6.87362623219492454821786080292, −5.70309854413014909151053217901, −4.89302660743230191859768776140, −3.46576163101441645613342787643, −1.78586070696064921915361779673, 0, 1.78586070696064921915361779673, 3.46576163101441645613342787643, 4.89302660743230191859768776140, 5.70309854413014909151053217901, 6.87362623219492454821786080292, 7.960610173605848451664836178499, 8.841016450479790414705282170216, 10.18263077548424889544170126357, 10.88077040247756589829471580466

Graph of the $Z$-function along the critical line