Properties

Label 2-30-1.1-c3-0-0
Degree $2$
Conductor $30$
Sign $1$
Analytic cond. $1.77005$
Root an. cond. $1.33043$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s + 5·5-s − 6·6-s + 32·7-s − 8·8-s + 9·9-s − 10·10-s − 60·11-s + 12·12-s − 34·13-s − 64·14-s + 15·15-s + 16·16-s + 42·17-s − 18·18-s − 76·19-s + 20·20-s + 96·21-s + 120·22-s − 24·24-s + 25·25-s + 68·26-s + 27·27-s + 128·28-s + 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 1.72·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.64·11-s + 0.288·12-s − 0.725·13-s − 1.22·14-s + 0.258·15-s + 1/4·16-s + 0.599·17-s − 0.235·18-s − 0.917·19-s + 0.223·20-s + 0.997·21-s + 1.16·22-s − 0.204·24-s + 1/5·25-s + 0.512·26-s + 0.192·27-s + 0.863·28-s + 0.0384·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30\)    =    \(2 \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(1.77005\)
Root analytic conductor: \(1.33043\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 30,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.164252130\)
\(L(\frac12)\) \(\approx\) \(1.164252130\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 - p T \)
5 \( 1 - p T \)
good7 \( 1 - 32 T + p^{3} T^{2} \)
11 \( 1 + 60 T + p^{3} T^{2} \)
13 \( 1 + 34 T + p^{3} T^{2} \)
17 \( 1 - 42 T + p^{3} T^{2} \)
19 \( 1 + 4 p T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 - 6 T + p^{3} T^{2} \)
31 \( 1 + 232 T + p^{3} T^{2} \)
37 \( 1 - 134 T + p^{3} T^{2} \)
41 \( 1 - 234 T + p^{3} T^{2} \)
43 \( 1 + 412 T + p^{3} T^{2} \)
47 \( 1 + 360 T + p^{3} T^{2} \)
53 \( 1 - 222 T + p^{3} T^{2} \)
59 \( 1 - 660 T + p^{3} T^{2} \)
61 \( 1 + 490 T + p^{3} T^{2} \)
67 \( 1 - 812 T + p^{3} T^{2} \)
71 \( 1 - 120 T + p^{3} T^{2} \)
73 \( 1 - 746 T + p^{3} T^{2} \)
79 \( 1 - 152 T + p^{3} T^{2} \)
83 \( 1 + 804 T + p^{3} T^{2} \)
89 \( 1 + 678 T + p^{3} T^{2} \)
97 \( 1 - 2 p T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.73333217515122542071631352064, −15.18427938561334980621665534069, −14.36550246758532564408033643751, −12.83978191962661469621805694296, −11.15059243829229966840425042378, −10.04921028817379948976437709995, −8.429223868668413900752750168558, −7.57368581901634818634839656776, −5.15085829225291237322003695490, −2.16239651492029636231625026431, 2.16239651492029636231625026431, 5.15085829225291237322003695490, 7.57368581901634818634839656776, 8.429223868668413900752750168558, 10.04921028817379948976437709995, 11.15059243829229966840425042378, 12.83978191962661469621805694296, 14.36550246758532564408033643751, 15.18427938561334980621665534069, 16.73333217515122542071631352064

Graph of the $Z$-function along the critical line