Properties

Label 2-30-1.1-c11-0-4
Degree $2$
Conductor $30$
Sign $-1$
Analytic cond. $23.0502$
Root an. cond. $4.80107$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32·2-s − 243·3-s + 1.02e3·4-s + 3.12e3·5-s + 7.77e3·6-s − 5.73e4·7-s − 3.27e4·8-s + 5.90e4·9-s − 1.00e5·10-s + 9.54e5·11-s − 2.48e5·12-s + 9.78e5·13-s + 1.83e6·14-s − 7.59e5·15-s + 1.04e6·16-s − 4.57e6·17-s − 1.88e6·18-s + 4.29e5·19-s + 3.20e6·20-s + 1.39e7·21-s − 3.05e7·22-s − 2.56e7·23-s + 7.96e6·24-s + 9.76e6·25-s − 3.12e7·26-s − 1.43e7·27-s − 5.87e7·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 1.29·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.78·11-s − 0.288·12-s + 0.730·13-s + 0.912·14-s − 0.258·15-s + 1/4·16-s − 0.781·17-s − 0.235·18-s + 0.0397·19-s + 0.223·20-s + 0.744·21-s − 1.26·22-s − 0.830·23-s + 0.204·24-s + 1/5·25-s − 0.516·26-s − 0.192·27-s − 0.645·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30\)    =    \(2 \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(23.0502\)
Root analytic conductor: \(4.80107\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 30,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{5} T \)
3 \( 1 + p^{5} T \)
5 \( 1 - p^{5} T \)
good7 \( 1 + 57376 T + p^{11} T^{2} \)
11 \( 1 - 954372 T + p^{11} T^{2} \)
13 \( 1 - 978038 T + p^{11} T^{2} \)
17 \( 1 + 4574766 T + p^{11} T^{2} \)
19 \( 1 - 429260 T + p^{11} T^{2} \)
23 \( 1 + 25641792 T + p^{11} T^{2} \)
29 \( 1 + 188685210 T + p^{11} T^{2} \)
31 \( 1 - 34469072 T + p^{11} T^{2} \)
37 \( 1 + 381698146 T + p^{11} T^{2} \)
41 \( 1 + 1116342918 T + p^{11} T^{2} \)
43 \( 1 + 182578612 T + p^{11} T^{2} \)
47 \( 1 - 2055898584 T + p^{11} T^{2} \)
53 \( 1 + 5352288402 T + p^{11} T^{2} \)
59 \( 1 + 2306052060 T + p^{11} T^{2} \)
61 \( 1 - 2262182822 T + p^{11} T^{2} \)
67 \( 1 + 16091830396 T + p^{11} T^{2} \)
71 \( 1 - 7283041032 T + p^{11} T^{2} \)
73 \( 1 - 28423422458 T + p^{11} T^{2} \)
79 \( 1 + 385693360 T + p^{11} T^{2} \)
83 \( 1 + 14785428252 T + p^{11} T^{2} \)
89 \( 1 + 95789444790 T + p^{11} T^{2} \)
97 \( 1 + 150483759166 T + p^{11} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.75753066339244915485050051007, −12.41010179387675815620989889614, −11.19842897715948920750099335895, −9.826803515340305548057979496898, −8.949037083018968639024858249023, −6.82234060395048640469383935904, −6.06497768250926829461156042354, −3.69848052712207192955951082405, −1.58480637503248373567245710469, 0, 1.58480637503248373567245710469, 3.69848052712207192955951082405, 6.06497768250926829461156042354, 6.82234060395048640469383935904, 8.949037083018968639024858249023, 9.826803515340305548057979496898, 11.19842897715948920750099335895, 12.41010179387675815620989889614, 13.75753066339244915485050051007

Graph of the $Z$-function along the critical line