Properties

Label 2-2e9-512.141-c1-0-13
Degree $2$
Conductor $512$
Sign $-0.836 - 0.548i$
Analytic cond. $4.08834$
Root an. cond. $2.02196$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.882 + 1.10i)2-s + (−0.603 + 1.82i)3-s + (−0.441 − 1.95i)4-s + (0.147 − 0.382i)5-s + (−1.48 − 2.27i)6-s + (1.09 − 1.83i)7-s + (2.54 + 1.23i)8-s + (−0.559 − 0.415i)9-s + (0.292 + 0.500i)10-s + (0.0203 + 0.165i)11-s + (3.82 + 0.369i)12-s + (−0.156 + 6.37i)13-s + (1.05 + 2.83i)14-s + (0.609 + 0.499i)15-s + (−3.60 + 1.72i)16-s + (−2.24 − 2.73i)17-s + ⋯
L(s)  = 1  + (−0.624 + 0.781i)2-s + (−0.348 + 1.05i)3-s + (−0.220 − 0.975i)4-s + (0.0659 − 0.170i)5-s + (−0.606 − 0.929i)6-s + (0.415 − 0.692i)7-s + (0.899 + 0.436i)8-s + (−0.186 − 0.138i)9-s + (0.0924 + 0.158i)10-s + (0.00613 + 0.0497i)11-s + (1.10 + 0.106i)12-s + (−0.0434 + 1.76i)13-s + (0.282 + 0.756i)14-s + (0.157 + 0.129i)15-s + (−0.902 + 0.431i)16-s + (−0.545 − 0.664i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.836 - 0.548i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.836 - 0.548i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(512\)    =    \(2^{9}\)
Sign: $-0.836 - 0.548i$
Analytic conductor: \(4.08834\)
Root analytic conductor: \(2.02196\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{512} (141, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 512,\ (\ :1/2),\ -0.836 - 0.548i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.247273 + 0.828066i\)
\(L(\frac12)\) \(\approx\) \(0.247273 + 0.828066i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.882 - 1.10i)T \)
good3 \( 1 + (0.603 - 1.82i)T + (-2.40 - 1.78i)T^{2} \)
5 \( 1 + (-0.147 + 0.382i)T + (-3.70 - 3.35i)T^{2} \)
7 \( 1 + (-1.09 + 1.83i)T + (-3.29 - 6.17i)T^{2} \)
11 \( 1 + (-0.0203 - 0.165i)T + (-10.6 + 2.67i)T^{2} \)
13 \( 1 + (0.156 - 6.37i)T + (-12.9 - 0.637i)T^{2} \)
17 \( 1 + (2.24 + 2.73i)T + (-3.31 + 16.6i)T^{2} \)
19 \( 1 + (-3.95 - 2.78i)T + (6.40 + 17.8i)T^{2} \)
23 \( 1 + (2.39 - 5.05i)T + (-14.5 - 17.7i)T^{2} \)
29 \( 1 + (-7.03 + 1.94i)T + (24.8 - 14.9i)T^{2} \)
31 \( 1 + (9.03 - 1.79i)T + (28.6 - 11.8i)T^{2} \)
37 \( 1 + (0.286 + 1.27i)T + (-33.4 + 15.8i)T^{2} \)
41 \( 1 + (-6.61 + 5.99i)T + (4.01 - 40.8i)T^{2} \)
43 \( 1 + (2.75 - 5.46i)T + (-25.6 - 34.5i)T^{2} \)
47 \( 1 + (5.22 + 2.79i)T + (26.1 + 39.0i)T^{2} \)
53 \( 1 + (10.3 + 2.85i)T + (45.4 + 27.2i)T^{2} \)
59 \( 1 + (-7.83 + 0.192i)T + (58.9 - 2.89i)T^{2} \)
61 \( 1 + (-7.97 - 6.88i)T + (8.95 + 60.3i)T^{2} \)
67 \( 1 + (4.19 - 0.309i)T + (66.2 - 9.83i)T^{2} \)
71 \( 1 + (1.12 - 7.56i)T + (-67.9 - 20.6i)T^{2} \)
73 \( 1 + (-6.86 - 11.4i)T + (-34.4 + 64.3i)T^{2} \)
79 \( 1 + (12.0 + 3.64i)T + (65.6 + 43.8i)T^{2} \)
83 \( 1 + (-0.162 + 0.725i)T + (-75.0 - 35.4i)T^{2} \)
89 \( 1 + (2.12 + 4.49i)T + (-56.4 + 68.7i)T^{2} \)
97 \( 1 + (4.21 + 2.81i)T + (37.1 + 89.6i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.14318845198707498332187135874, −10.09021154383066244692308664808, −9.517837008214248234544989085557, −8.806887687083063022761269244987, −7.51723157187865728866398763529, −6.89810446596806622779365645590, −5.57311757538808231916828760348, −4.74667911133026200603909723628, −3.97283671576490471308610664278, −1.58026253486278132644371816703, 0.70575309457715067094165939945, 2.10619719119721048036172802076, 3.15892582013776691503710597341, 4.80844288964970397402739739357, 6.05564965211838657585708738638, 7.07095273611205938529711647441, 8.024621599252222088327138626687, 8.581057833970398359364069994408, 9.780701009820926783917027055747, 10.68606007204252957807290753711

Graph of the $Z$-function along the critical line