Properties

Label 2-2e8-256.101-c1-0-6
Degree $2$
Conductor $256$
Sign $0.988 - 0.151i$
Analytic cond. $2.04417$
Root an. cond. $1.42974$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.31 − 0.520i)2-s + (−1.29 + 0.324i)3-s + (1.45 + 1.36i)4-s + (−0.836 − 0.395i)5-s + (1.87 + 0.247i)6-s + (−0.263 − 0.867i)7-s + (−1.20 − 2.55i)8-s + (−1.07 + 0.573i)9-s + (0.894 + 0.955i)10-s + (6.27 − 0.931i)11-s + (−2.33 − 1.29i)12-s + (−1.67 + 4.68i)13-s + (−0.105 + 1.27i)14-s + (1.21 + 0.241i)15-s + (0.254 + 3.99i)16-s + (3.44 − 0.685i)17-s + ⋯
L(s)  = 1  + (−0.929 − 0.367i)2-s + (−0.747 + 0.187i)3-s + (0.729 + 0.684i)4-s + (−0.374 − 0.176i)5-s + (0.764 + 0.100i)6-s + (−0.0994 − 0.327i)7-s + (−0.426 − 0.904i)8-s + (−0.357 + 0.191i)9-s + (0.282 + 0.302i)10-s + (1.89 − 0.280i)11-s + (−0.673 − 0.375i)12-s + (−0.465 + 1.29i)13-s + (−0.0281 + 0.341i)14-s + (0.312 + 0.0622i)15-s + (0.0636 + 0.997i)16-s + (0.835 − 0.166i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.151i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 - 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $0.988 - 0.151i$
Analytic conductor: \(2.04417\)
Root analytic conductor: \(1.42974\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{256} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :1/2),\ 0.988 - 0.151i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.629421 + 0.0479296i\)
\(L(\frac12)\) \(\approx\) \(0.629421 + 0.0479296i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.31 + 0.520i)T \)
good3 \( 1 + (1.29 - 0.324i)T + (2.64 - 1.41i)T^{2} \)
5 \( 1 + (0.836 + 0.395i)T + (3.17 + 3.86i)T^{2} \)
7 \( 1 + (0.263 + 0.867i)T + (-5.82 + 3.88i)T^{2} \)
11 \( 1 + (-6.27 + 0.931i)T + (10.5 - 3.19i)T^{2} \)
13 \( 1 + (1.67 - 4.68i)T + (-10.0 - 8.24i)T^{2} \)
17 \( 1 + (-3.44 + 0.685i)T + (15.7 - 6.50i)T^{2} \)
19 \( 1 + (-2.63 - 2.38i)T + (1.86 + 18.9i)T^{2} \)
23 \( 1 + (-7.02 + 0.692i)T + (22.5 - 4.48i)T^{2} \)
29 \( 1 + (-4.93 - 6.65i)T + (-8.41 + 27.7i)T^{2} \)
31 \( 1 + (-3.49 - 1.44i)T + (21.9 + 21.9i)T^{2} \)
37 \( 1 + (-0.0343 + 0.699i)T + (-36.8 - 3.62i)T^{2} \)
41 \( 1 + (0.225 - 0.274i)T + (-7.99 - 40.2i)T^{2} \)
43 \( 1 + (2.18 - 8.72i)T + (-37.9 - 20.2i)T^{2} \)
47 \( 1 + (10.9 + 7.32i)T + (17.9 + 43.4i)T^{2} \)
53 \( 1 + (4.46 - 6.01i)T + (-15.3 - 50.7i)T^{2} \)
59 \( 1 + (1.61 + 4.51i)T + (-45.6 + 37.4i)T^{2} \)
61 \( 1 + (3.33 - 5.56i)T + (-28.7 - 53.7i)T^{2} \)
67 \( 1 + (-6.51 - 3.90i)T + (31.5 + 59.0i)T^{2} \)
71 \( 1 + (1.30 - 2.43i)T + (-39.4 - 59.0i)T^{2} \)
73 \( 1 + (-2.56 + 8.45i)T + (-60.6 - 40.5i)T^{2} \)
79 \( 1 + (-1.31 - 1.97i)T + (-30.2 + 72.9i)T^{2} \)
83 \( 1 + (0.578 + 11.7i)T + (-82.6 + 8.13i)T^{2} \)
89 \( 1 + (-1.62 - 0.160i)T + (87.2 + 17.3i)T^{2} \)
97 \( 1 + (4.64 - 11.2i)T + (-68.5 - 68.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.78909248222126408147544452243, −11.25640777344743131699373759404, −10.11755442849396609107248350522, −9.242191392014591169178423386741, −8.372205792553783758101021458801, −7.04257118653911315614813474134, −6.32631682819942430983720355967, −4.64022300733041061892209141775, −3.33422169028160255318944528107, −1.21407920028719404902017559987, 0.946815419935210780916378844191, 3.13497117368198656788665615716, 5.16663845257279390211151553624, 6.17580686953661197349393313322, 6.99435875236479639022287962089, 8.052595463175662967614299836756, 9.170010702391981659460893409370, 9.930824953936077644760462276421, 11.18407763516322408360667117559, 11.72971807236035096490019876023

Graph of the $Z$-function along the critical line