Properties

Label 2-2e8-256.101-c1-0-29
Degree $2$
Conductor $256$
Sign $-0.628 - 0.777i$
Analytic cond. $2.04417$
Root an. cond. $1.42974$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.161 − 1.40i)2-s + (−1.65 + 0.414i)3-s + (−1.94 − 0.453i)4-s + (0.608 + 0.287i)5-s + (0.315 + 2.39i)6-s + (−1.02 − 3.37i)7-s + (−0.951 + 2.66i)8-s + (−0.0776 + 0.0415i)9-s + (0.502 − 0.808i)10-s + (−3.45 + 0.512i)11-s + (3.41 − 0.0567i)12-s + (−1.81 + 5.07i)13-s + (−4.90 + 0.892i)14-s + (−1.12 − 0.224i)15-s + (3.58 + 1.76i)16-s + (−2.95 + 0.587i)17-s + ⋯
L(s)  = 1  + (0.114 − 0.993i)2-s + (−0.955 + 0.239i)3-s + (−0.973 − 0.226i)4-s + (0.272 + 0.128i)5-s + (0.128 + 0.976i)6-s + (−0.386 − 1.27i)7-s + (−0.336 + 0.941i)8-s + (−0.0258 + 0.0138i)9-s + (0.158 − 0.255i)10-s + (−1.04 + 0.154i)11-s + (0.985 − 0.0163i)12-s + (−0.503 + 1.40i)13-s + (−1.31 + 0.238i)14-s + (−0.290 − 0.0578i)15-s + (0.897 + 0.441i)16-s + (−0.716 + 0.142i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.628 - 0.777i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.628 - 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $-0.628 - 0.777i$
Analytic conductor: \(2.04417\)
Root analytic conductor: \(1.42974\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{256} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :1/2),\ -0.628 - 0.777i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0445718 + 0.0933807i\)
\(L(\frac12)\) \(\approx\) \(0.0445718 + 0.0933807i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.161 + 1.40i)T \)
good3 \( 1 + (1.65 - 0.414i)T + (2.64 - 1.41i)T^{2} \)
5 \( 1 + (-0.608 - 0.287i)T + (3.17 + 3.86i)T^{2} \)
7 \( 1 + (1.02 + 3.37i)T + (-5.82 + 3.88i)T^{2} \)
11 \( 1 + (3.45 - 0.512i)T + (10.5 - 3.19i)T^{2} \)
13 \( 1 + (1.81 - 5.07i)T + (-10.0 - 8.24i)T^{2} \)
17 \( 1 + (2.95 - 0.587i)T + (15.7 - 6.50i)T^{2} \)
19 \( 1 + (1.32 + 1.20i)T + (1.86 + 18.9i)T^{2} \)
23 \( 1 + (0.382 - 0.0376i)T + (22.5 - 4.48i)T^{2} \)
29 \( 1 + (-0.228 - 0.307i)T + (-8.41 + 27.7i)T^{2} \)
31 \( 1 + (2.67 + 1.10i)T + (21.9 + 21.9i)T^{2} \)
37 \( 1 + (-0.180 + 3.68i)T + (-36.8 - 3.62i)T^{2} \)
41 \( 1 + (-1.61 + 1.96i)T + (-7.99 - 40.2i)T^{2} \)
43 \( 1 + (-0.249 + 0.996i)T + (-37.9 - 20.2i)T^{2} \)
47 \( 1 + (5.05 + 3.37i)T + (17.9 + 43.4i)T^{2} \)
53 \( 1 + (-6.43 + 8.68i)T + (-15.3 - 50.7i)T^{2} \)
59 \( 1 + (-3.30 - 9.23i)T + (-45.6 + 37.4i)T^{2} \)
61 \( 1 + (6.16 - 10.2i)T + (-28.7 - 53.7i)T^{2} \)
67 \( 1 + (9.37 + 5.62i)T + (31.5 + 59.0i)T^{2} \)
71 \( 1 + (5.74 - 10.7i)T + (-39.4 - 59.0i)T^{2} \)
73 \( 1 + (-4.38 + 14.4i)T + (-60.6 - 40.5i)T^{2} \)
79 \( 1 + (6.22 + 9.32i)T + (-30.2 + 72.9i)T^{2} \)
83 \( 1 + (-0.681 - 13.8i)T + (-82.6 + 8.13i)T^{2} \)
89 \( 1 + (-9.89 - 0.974i)T + (87.2 + 17.3i)T^{2} \)
97 \( 1 + (-6.70 + 16.1i)T + (-68.5 - 68.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.29545234208692565380096079310, −10.50932149243421979016734436385, −10.02717838673648674852524459743, −8.825202706922190518760533115924, −7.33161487257276078423127684528, −6.12425659920969612461932633282, −4.87213705210305084605793987378, −4.05680496521926549224897147797, −2.29229401873609251293372250280, −0.082647760621158035380563383428, 2.94699958283328578975417042203, 5.03452359391102550816209082190, 5.63936940770311043906938741928, 6.31178154095465194024853806499, 7.64047709183002925500649334654, 8.605042829774027669429097647110, 9.602636763557271865019407219589, 10.70130282224642113234720490632, 11.95923239263385527398369222731, 12.76384997318581058419625011267

Graph of the $Z$-function along the critical line