Properties

Label 2-2e8-256.101-c1-0-28
Degree $2$
Conductor $256$
Sign $-0.690 + 0.723i$
Analytic cond. $2.04417$
Root an. cond. $1.42974$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.138 − 1.40i)2-s + (2.62 − 0.658i)3-s + (−1.96 + 0.389i)4-s + (−2.26 − 1.07i)5-s + (−1.28 − 3.60i)6-s + (−0.826 − 2.72i)7-s + (0.819 + 2.70i)8-s + (3.82 − 2.04i)9-s + (−1.19 + 3.33i)10-s + (−2.11 + 0.314i)11-s + (−4.89 + 2.31i)12-s + (0.782 − 2.18i)13-s + (−3.72 + 1.54i)14-s + (−6.65 − 1.32i)15-s + (3.69 − 1.52i)16-s + (4.41 − 0.877i)17-s + ⋯
L(s)  = 1  + (−0.0978 − 0.995i)2-s + (1.51 − 0.379i)3-s + (−0.980 + 0.194i)4-s + (−1.01 − 0.479i)5-s + (−0.526 − 1.47i)6-s + (−0.312 − 1.03i)7-s + (0.289 + 0.957i)8-s + (1.27 − 0.681i)9-s + (−0.377 + 1.05i)10-s + (−0.638 + 0.0947i)11-s + (−1.41 + 0.668i)12-s + (0.217 − 0.606i)13-s + (−0.994 + 0.411i)14-s + (−1.71 − 0.341i)15-s + (0.924 − 0.381i)16-s + (1.07 − 0.212i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.690 + 0.723i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.690 + 0.723i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $-0.690 + 0.723i$
Analytic conductor: \(2.04417\)
Root analytic conductor: \(1.42974\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{256} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :1/2),\ -0.690 + 0.723i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.560854 - 1.31125i\)
\(L(\frac12)\) \(\approx\) \(0.560854 - 1.31125i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.138 + 1.40i)T \)
good3 \( 1 + (-2.62 + 0.658i)T + (2.64 - 1.41i)T^{2} \)
5 \( 1 + (2.26 + 1.07i)T + (3.17 + 3.86i)T^{2} \)
7 \( 1 + (0.826 + 2.72i)T + (-5.82 + 3.88i)T^{2} \)
11 \( 1 + (2.11 - 0.314i)T + (10.5 - 3.19i)T^{2} \)
13 \( 1 + (-0.782 + 2.18i)T + (-10.0 - 8.24i)T^{2} \)
17 \( 1 + (-4.41 + 0.877i)T + (15.7 - 6.50i)T^{2} \)
19 \( 1 + (-3.49 - 3.16i)T + (1.86 + 18.9i)T^{2} \)
23 \( 1 + (-2.93 + 0.288i)T + (22.5 - 4.48i)T^{2} \)
29 \( 1 + (-4.77 - 6.43i)T + (-8.41 + 27.7i)T^{2} \)
31 \( 1 + (-2.44 - 1.01i)T + (21.9 + 21.9i)T^{2} \)
37 \( 1 + (0.110 - 2.25i)T + (-36.8 - 3.62i)T^{2} \)
41 \( 1 + (7.40 - 9.02i)T + (-7.99 - 40.2i)T^{2} \)
43 \( 1 + (-2.59 + 10.3i)T + (-37.9 - 20.2i)T^{2} \)
47 \( 1 + (7.88 + 5.26i)T + (17.9 + 43.4i)T^{2} \)
53 \( 1 + (6.89 - 9.29i)T + (-15.3 - 50.7i)T^{2} \)
59 \( 1 + (-3.93 - 10.9i)T + (-45.6 + 37.4i)T^{2} \)
61 \( 1 + (-1.81 + 3.03i)T + (-28.7 - 53.7i)T^{2} \)
67 \( 1 + (-4.53 - 2.71i)T + (31.5 + 59.0i)T^{2} \)
71 \( 1 + (-4.71 + 8.82i)T + (-39.4 - 59.0i)T^{2} \)
73 \( 1 + (-1.42 + 4.69i)T + (-60.6 - 40.5i)T^{2} \)
79 \( 1 + (-4.85 - 7.26i)T + (-30.2 + 72.9i)T^{2} \)
83 \( 1 + (0.750 + 15.2i)T + (-82.6 + 8.13i)T^{2} \)
89 \( 1 + (3.99 + 0.393i)T + (87.2 + 17.3i)T^{2} \)
97 \( 1 + (-5.45 + 13.1i)T + (-68.5 - 68.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.89458739829421708377770837601, −10.50207398839187869244680475927, −9.842616936881268808597580736543, −8.621735485063456541259915018359, −7.997413467839322975196223906321, −7.33622990579446013459202575731, −4.94020126309702638284071985611, −3.61297414889779509774466391205, −3.09012905072238770217393916183, −1.13283204435462624733595625631, 2.86890125134199002355127880236, 3.80465644419239421096544244798, 5.15640403664740063630488640093, 6.65137136573401347666902693954, 7.83421115445288425240811024982, 8.238632282583778195526741274780, 9.274298189778591724399355371703, 9.908620069763820700317443401777, 11.43222032180755238076103897926, 12.64438538479564353648375873756

Graph of the $Z$-function along the critical line