Properties

Label 2-2e8-256.101-c1-0-0
Degree $2$
Conductor $256$
Sign $-0.779 + 0.625i$
Analytic cond. $2.04417$
Root an. cond. $1.42974$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.07 + 0.915i)2-s + (−1.53 + 0.384i)3-s + (0.324 + 1.97i)4-s + (−3.70 − 1.75i)5-s + (−2.00 − 0.990i)6-s + (−0.841 − 2.77i)7-s + (−1.45 + 2.42i)8-s + (−0.437 + 0.233i)9-s + (−2.39 − 5.28i)10-s + (−2.18 + 0.324i)11-s + (−1.25 − 2.90i)12-s + (−1.41 + 3.95i)13-s + (1.63 − 3.75i)14-s + (6.36 + 1.26i)15-s + (−3.78 + 1.28i)16-s + (6.74 − 1.34i)17-s + ⋯
L(s)  = 1  + (0.762 + 0.647i)2-s + (−0.886 + 0.221i)3-s + (0.162 + 0.986i)4-s + (−1.65 − 0.783i)5-s + (−0.819 − 0.404i)6-s + (−0.317 − 1.04i)7-s + (−0.515 + 0.857i)8-s + (−0.145 + 0.0779i)9-s + (−0.756 − 1.67i)10-s + (−0.660 + 0.0979i)11-s + (−0.362 − 0.838i)12-s + (−0.392 + 1.09i)13-s + (0.436 − 1.00i)14-s + (1.64 + 0.326i)15-s + (−0.947 + 0.320i)16-s + (1.63 − 0.325i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.779 + 0.625i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.779 + 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $-0.779 + 0.625i$
Analytic conductor: \(2.04417\)
Root analytic conductor: \(1.42974\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{256} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :1/2),\ -0.779 + 0.625i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0281132 - 0.0799548i\)
\(L(\frac12)\) \(\approx\) \(0.0281132 - 0.0799548i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.07 - 0.915i)T \)
good3 \( 1 + (1.53 - 0.384i)T + (2.64 - 1.41i)T^{2} \)
5 \( 1 + (3.70 + 1.75i)T + (3.17 + 3.86i)T^{2} \)
7 \( 1 + (0.841 + 2.77i)T + (-5.82 + 3.88i)T^{2} \)
11 \( 1 + (2.18 - 0.324i)T + (10.5 - 3.19i)T^{2} \)
13 \( 1 + (1.41 - 3.95i)T + (-10.0 - 8.24i)T^{2} \)
17 \( 1 + (-6.74 + 1.34i)T + (15.7 - 6.50i)T^{2} \)
19 \( 1 + (0.903 + 0.819i)T + (1.86 + 18.9i)T^{2} \)
23 \( 1 + (8.49 - 0.836i)T + (22.5 - 4.48i)T^{2} \)
29 \( 1 + (2.29 + 3.09i)T + (-8.41 + 27.7i)T^{2} \)
31 \( 1 + (1.05 + 0.437i)T + (21.9 + 21.9i)T^{2} \)
37 \( 1 + (0.350 - 7.13i)T + (-36.8 - 3.62i)T^{2} \)
41 \( 1 + (2.54 - 3.09i)T + (-7.99 - 40.2i)T^{2} \)
43 \( 1 + (0.967 - 3.86i)T + (-37.9 - 20.2i)T^{2} \)
47 \( 1 + (6.17 + 4.12i)T + (17.9 + 43.4i)T^{2} \)
53 \( 1 + (2.30 - 3.10i)T + (-15.3 - 50.7i)T^{2} \)
59 \( 1 + (1.26 + 3.53i)T + (-45.6 + 37.4i)T^{2} \)
61 \( 1 + (-5.53 + 9.23i)T + (-28.7 - 53.7i)T^{2} \)
67 \( 1 + (4.17 + 2.50i)T + (31.5 + 59.0i)T^{2} \)
71 \( 1 + (-4.35 + 8.14i)T + (-39.4 - 59.0i)T^{2} \)
73 \( 1 + (-0.401 + 1.32i)T + (-60.6 - 40.5i)T^{2} \)
79 \( 1 + (-5.64 - 8.44i)T + (-30.2 + 72.9i)T^{2} \)
83 \( 1 + (0.0348 + 0.708i)T + (-82.6 + 8.13i)T^{2} \)
89 \( 1 + (10.9 + 1.07i)T + (87.2 + 17.3i)T^{2} \)
97 \( 1 + (5.66 - 13.6i)T + (-68.5 - 68.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32925455092140978523847458887, −11.87006186186099193159496659422, −11.15651344073226077169597861883, −9.823074806438770911615964730083, −8.130464206758056210577385161330, −7.71958537351270781102614789424, −6.58215475567948388684814806352, −5.21589393598021424524916954121, −4.44650355009328448880996985153, −3.54796005787482344604429102219, 0.05523313738391081246075797923, 2.83323326980251923951505176371, 3.73085097861349355870898023314, 5.36915984650215751570697653387, 5.97710878380793943461371062369, 7.31810557713341788362524986704, 8.348877724774631713550269341114, 10.09552262162330329877326253080, 10.78966248860054858860721460672, 11.70034869904521833676648810795

Graph of the $Z$-function along the critical line