Properties

Label 2-2e8-1.1-c3-0-3
Degree $2$
Conductor $256$
Sign $1$
Analytic cond. $15.1044$
Root an. cond. $3.88644$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·3-s + 12·5-s − 32·7-s + 37·9-s + 8·11-s − 20·13-s − 96·15-s − 98·17-s + 88·19-s + 256·21-s + 32·23-s + 19·25-s − 80·27-s + 172·29-s + 256·31-s − 64·33-s − 384·35-s + 92·37-s + 160·39-s + 102·41-s + 296·43-s + 444·45-s + 320·47-s + 681·49-s + 784·51-s + 76·53-s + 96·55-s + ⋯
L(s)  = 1  − 1.53·3-s + 1.07·5-s − 1.72·7-s + 1.37·9-s + 0.219·11-s − 0.426·13-s − 1.65·15-s − 1.39·17-s + 1.06·19-s + 2.66·21-s + 0.290·23-s + 0.151·25-s − 0.570·27-s + 1.10·29-s + 1.48·31-s − 0.337·33-s − 1.85·35-s + 0.408·37-s + 0.656·39-s + 0.388·41-s + 1.04·43-s + 1.47·45-s + 0.993·47-s + 1.98·49-s + 2.15·51-s + 0.196·53-s + 0.235·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(15.1044\)
Root analytic conductor: \(3.88644\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8786818795\)
\(L(\frac12)\) \(\approx\) \(0.8786818795\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 8 T + p^{3} T^{2} \)
5 \( 1 - 12 T + p^{3} T^{2} \)
7 \( 1 + 32 T + p^{3} T^{2} \)
11 \( 1 - 8 T + p^{3} T^{2} \)
13 \( 1 + 20 T + p^{3} T^{2} \)
17 \( 1 + 98 T + p^{3} T^{2} \)
19 \( 1 - 88 T + p^{3} T^{2} \)
23 \( 1 - 32 T + p^{3} T^{2} \)
29 \( 1 - 172 T + p^{3} T^{2} \)
31 \( 1 - 256 T + p^{3} T^{2} \)
37 \( 1 - 92 T + p^{3} T^{2} \)
41 \( 1 - 102 T + p^{3} T^{2} \)
43 \( 1 - 296 T + p^{3} T^{2} \)
47 \( 1 - 320 T + p^{3} T^{2} \)
53 \( 1 - 76 T + p^{3} T^{2} \)
59 \( 1 + 408 T + p^{3} T^{2} \)
61 \( 1 - 636 T + p^{3} T^{2} \)
67 \( 1 + 552 T + p^{3} T^{2} \)
71 \( 1 + 416 T + p^{3} T^{2} \)
73 \( 1 - 138 T + p^{3} T^{2} \)
79 \( 1 - 64 T + p^{3} T^{2} \)
83 \( 1 + 392 T + p^{3} T^{2} \)
89 \( 1 + 582 T + p^{3} T^{2} \)
97 \( 1 - 238 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64230394274837270651568835716, −10.49456656517206369448463674114, −9.873364293942083345353634661190, −9.096170267354020248336230362697, −7.05359942711422536857798379532, −6.33110976002528288935016550073, −5.75653707558652282163136496634, −4.51095361989727078837816582791, −2.70502047553075965569553815751, −0.71497672314750309377197420862, 0.71497672314750309377197420862, 2.70502047553075965569553815751, 4.51095361989727078837816582791, 5.75653707558652282163136496634, 6.33110976002528288935016550073, 7.05359942711422536857798379532, 9.096170267354020248336230362697, 9.873364293942083345353634661190, 10.49456656517206369448463674114, 11.64230394274837270651568835716

Graph of the $Z$-function along the critical line