Properties

Label 2-2e8-1.1-c3-0-10
Degree $2$
Conductor $256$
Sign $1$
Analytic cond. $15.1044$
Root an. cond. $3.88644$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.32·3-s + 17.8·5-s − 22.6·7-s + 13.0·9-s + 44.2·11-s + 17.8·13-s + 113.·15-s + 70·17-s + 82.2·19-s − 143.·21-s − 158.·23-s + 195.·25-s − 88.5·27-s − 125.·29-s + 280·33-s − 404.·35-s + 375.·37-s + 113.·39-s + 182·41-s − 132.·43-s + 232.·45-s − 316.·47-s + 169.·49-s + 442.·51-s − 125.·53-s + 791.·55-s + 520·57-s + ⋯
L(s)  = 1  + 1.21·3-s + 1.60·5-s − 1.22·7-s + 0.481·9-s + 1.21·11-s + 0.381·13-s + 1.94·15-s + 0.998·17-s + 0.992·19-s − 1.48·21-s − 1.43·23-s + 1.56·25-s − 0.631·27-s − 0.801·29-s + 1.47·33-s − 1.95·35-s + 1.66·37-s + 0.464·39-s + 0.693·41-s − 0.471·43-s + 0.770·45-s − 0.983·47-s + 0.492·49-s + 1.21·51-s − 0.324·53-s + 1.94·55-s + 1.20·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(15.1044\)
Root analytic conductor: \(3.88644\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.323084619\)
\(L(\frac12)\) \(\approx\) \(3.323084619\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 6.32T + 27T^{2} \)
5 \( 1 - 17.8T + 125T^{2} \)
7 \( 1 + 22.6T + 343T^{2} \)
11 \( 1 - 44.2T + 1.33e3T^{2} \)
13 \( 1 - 17.8T + 2.19e3T^{2} \)
17 \( 1 - 70T + 4.91e3T^{2} \)
19 \( 1 - 82.2T + 6.85e3T^{2} \)
23 \( 1 + 158.T + 1.21e4T^{2} \)
29 \( 1 + 125.T + 2.43e4T^{2} \)
31 \( 1 + 2.97e4T^{2} \)
37 \( 1 - 375.T + 5.06e4T^{2} \)
41 \( 1 - 182T + 6.89e4T^{2} \)
43 \( 1 + 132.T + 7.95e4T^{2} \)
47 \( 1 + 316.T + 1.03e5T^{2} \)
53 \( 1 + 125.T + 1.48e5T^{2} \)
59 \( 1 + 82.2T + 2.05e5T^{2} \)
61 \( 1 - 232.T + 2.26e5T^{2} \)
67 \( 1 + 221.T + 3.00e5T^{2} \)
71 \( 1 + 113.T + 3.57e5T^{2} \)
73 \( 1 + 910T + 3.89e5T^{2} \)
79 \( 1 + 678.T + 4.93e5T^{2} \)
83 \( 1 - 714.T + 5.71e5T^{2} \)
89 \( 1 - 546T + 7.04e5T^{2} \)
97 \( 1 + 490T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.67337385182585094769958386276, −10.02119051332257663443745078699, −9.597678755215540686089111384142, −9.033809973051537377322725435369, −7.74066911150519706963832341416, −6.39289495823577702074046085854, −5.75538755066282345655153834152, −3.76722166643246114933524129058, −2.80810883829530013745395077812, −1.51754484392689165697370344442, 1.51754484392689165697370344442, 2.80810883829530013745395077812, 3.76722166643246114933524129058, 5.75538755066282345655153834152, 6.39289495823577702074046085854, 7.74066911150519706963832341416, 9.033809973051537377322725435369, 9.597678755215540686089111384142, 10.02119051332257663443745078699, 11.67337385182585094769958386276

Graph of the $Z$-function along the critical line