L(s) = 1 | + 8i·3-s + 12i·5-s + 32·7-s − 37·9-s + 8i·11-s + 20i·13-s − 96·15-s − 98·17-s − 88i·19-s + 256i·21-s − 32·23-s − 19·25-s − 80i·27-s − 172i·29-s + 256·31-s + ⋯ |
L(s) = 1 | + 1.53i·3-s + 1.07i·5-s + 1.72·7-s − 1.37·9-s + 0.219i·11-s + 0.426i·13-s − 1.65·15-s − 1.39·17-s − 1.06i·19-s + 2.66i·21-s − 0.290·23-s − 0.151·25-s − 0.570i·27-s − 1.10i·29-s + 1.48·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.672513 + 1.62359i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.672513 + 1.62359i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 8iT - 27T^{2} \) |
| 5 | \( 1 - 12iT - 125T^{2} \) |
| 7 | \( 1 - 32T + 343T^{2} \) |
| 11 | \( 1 - 8iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 20iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 98T + 4.91e3T^{2} \) |
| 19 | \( 1 + 88iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 32T + 1.21e4T^{2} \) |
| 29 | \( 1 + 172iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 256T + 2.97e4T^{2} \) |
| 37 | \( 1 - 92iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 102T + 6.89e4T^{2} \) |
| 43 | \( 1 - 296iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 320T + 1.03e5T^{2} \) |
| 53 | \( 1 - 76iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 408iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 636iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 552iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 416T + 3.57e5T^{2} \) |
| 73 | \( 1 + 138T + 3.89e5T^{2} \) |
| 79 | \( 1 - 64T + 4.93e5T^{2} \) |
| 83 | \( 1 - 392iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 582T + 7.04e5T^{2} \) |
| 97 | \( 1 - 238T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.67822346935608087163089189263, −11.57583110313415464142731708735, −11.12822947956863285704652408164, −10.33437900698030338384198933431, −9.191583735928561591017020860505, −8.089192463011981164000115636422, −6.62205745988845873508948989686, −4.92132557573469814446618530506, −4.23644807004496027662100866424, −2.48725669430463390720141254769,
0.987822623787148991049122495485, 2.01909209413364677560323945833, 4.58601960856081079575403047043, 5.75525133058376162544666269319, 7.20768799973568294427327842474, 8.255874575714206297938088971032, 8.679873894342876700325528142585, 10.70855406300588520073910657282, 11.83041443380580924483506319650, 12.42089260740481076117081928986