L(s) = 1 | + (0.0461 + 0.0461i)3-s + (8.04 + 8.04i)5-s − 49.8·7-s − 80.9i·9-s + (84.2 − 84.2i)11-s + (−19.4 + 19.4i)13-s + 0.743i·15-s + 437.·17-s + (−349. − 349. i)19-s + (−2.30 − 2.30i)21-s − 404.·23-s − 495. i·25-s + (7.48 − 7.48i)27-s + (1.03e3 − 1.03e3i)29-s − 1.50e3i·31-s + ⋯ |
L(s) = 1 | + (0.00513 + 0.00513i)3-s + (0.321 + 0.321i)5-s − 1.01·7-s − 0.999i·9-s + (0.696 − 0.696i)11-s + (−0.115 + 0.115i)13-s + 0.00330i·15-s + 1.51·17-s + (−0.966 − 0.966i)19-s + (−0.00522 − 0.00522i)21-s − 0.765·23-s − 0.792i·25-s + (0.0102 − 0.0102i)27-s + (1.22 − 1.22i)29-s − 1.56i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.159 + 0.987i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.159 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.07797 - 0.917720i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07797 - 0.917720i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (-0.0461 - 0.0461i)T + 81iT^{2} \) |
| 5 | \( 1 + (-8.04 - 8.04i)T + 625iT^{2} \) |
| 7 | \( 1 + 49.8T + 2.40e3T^{2} \) |
| 11 | \( 1 + (-84.2 + 84.2i)T - 1.46e4iT^{2} \) |
| 13 | \( 1 + (19.4 - 19.4i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 - 437.T + 8.35e4T^{2} \) |
| 19 | \( 1 + (349. + 349. i)T + 1.30e5iT^{2} \) |
| 23 | \( 1 + 404.T + 2.79e5T^{2} \) |
| 29 | \( 1 + (-1.03e3 + 1.03e3i)T - 7.07e5iT^{2} \) |
| 31 | \( 1 + 1.50e3iT - 9.23e5T^{2} \) |
| 37 | \( 1 + (-434. - 434. i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 - 696. iT - 2.82e6T^{2} \) |
| 43 | \( 1 + (917. - 917. i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 - 111. iT - 4.87e6T^{2} \) |
| 53 | \( 1 + (1.04e3 + 1.04e3i)T + 7.89e6iT^{2} \) |
| 59 | \( 1 + (-1.71e3 + 1.71e3i)T - 1.21e7iT^{2} \) |
| 61 | \( 1 + (3.71e3 - 3.71e3i)T - 1.38e7iT^{2} \) |
| 67 | \( 1 + (-1.85e3 - 1.85e3i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 + 1.16e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 905. iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 5.86e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (-7.56e3 - 7.56e3i)T + 4.74e7iT^{2} \) |
| 89 | \( 1 - 6.43e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 413.T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.36011997182082869616822787119, −11.52748356943772147916585373100, −10.05567696698630676013465925138, −9.485285058181252795670799645743, −8.185918383761098180990055559504, −6.53403356993108786325801000806, −6.09416559391254557045724245125, −4.04336149855134639815764966163, −2.81993404040356322736284380478, −0.60772629385053788671566438609,
1.63731207090663851589154453901, 3.40323639575062899017620124526, 4.97597790436380508822774763733, 6.20984337279012424748415121728, 7.43840677233148158108339323358, 8.687922453944076037752763023982, 9.887321457442243497812202339080, 10.50662962002507821104072413380, 12.20694904107290354611826721280, 12.66837503434087980914857426386