L(s) = 1 | + 4.92·3-s − 15.8·5-s − 17.8·7-s − 2.71·9-s − 52.9·11-s − 8.43·13-s − 78.1·15-s + 129.·17-s − 50.4·19-s − 87.9·21-s + 128.·23-s + 126.·25-s − 146.·27-s − 111.·29-s − 302.·31-s − 260.·33-s + 283.·35-s + 182.·37-s − 41.5·39-s − 94.5·41-s − 184.·43-s + 43.0·45-s + 296.·47-s − 24.1·49-s + 636.·51-s + 102.·53-s + 839.·55-s + ⋯ |
L(s) = 1 | + 0.948·3-s − 1.41·5-s − 0.964·7-s − 0.100·9-s − 1.45·11-s − 0.179·13-s − 1.34·15-s + 1.84·17-s − 0.609·19-s − 0.914·21-s + 1.16·23-s + 1.01·25-s − 1.04·27-s − 0.712·29-s − 1.75·31-s − 1.37·33-s + 1.36·35-s + 0.813·37-s − 0.170·39-s − 0.360·41-s − 0.654·43-s + 0.142·45-s + 0.921·47-s − 0.0704·49-s + 1.74·51-s + 0.266·53-s + 2.05·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 4.92T + 27T^{2} \) |
| 5 | \( 1 + 15.8T + 125T^{2} \) |
| 7 | \( 1 + 17.8T + 343T^{2} \) |
| 11 | \( 1 + 52.9T + 1.33e3T^{2} \) |
| 13 | \( 1 + 8.43T + 2.19e3T^{2} \) |
| 17 | \( 1 - 129.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 50.4T + 6.85e3T^{2} \) |
| 23 | \( 1 - 128.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 111.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 302.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 182.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 94.5T + 6.89e4T^{2} \) |
| 43 | \( 1 + 184.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 296.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 102.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 93.3T + 2.05e5T^{2} \) |
| 61 | \( 1 - 338.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 489.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 86.9T + 3.57e5T^{2} \) |
| 73 | \( 1 + 154.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 449.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 383.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 517.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.73e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.57922595664834922018887791145, −11.35580316306259526163864712029, −10.20565474923032702876951015934, −9.010059726596423627200766680499, −7.932237006269247628069458834915, −7.34588040132094978657080488008, −5.45842832176487131941272740256, −3.68874375507197308008460118587, −2.88878975924974230801385065637, 0,
2.88878975924974230801385065637, 3.68874375507197308008460118587, 5.45842832176487131941272740256, 7.34588040132094978657080488008, 7.932237006269247628069458834915, 9.010059726596423627200766680499, 10.20565474923032702876951015934, 11.35580316306259526163864712029, 12.57922595664834922018887791145