Properties

Label 2-2e7-1.1-c3-0-11
Degree $2$
Conductor $128$
Sign $-1$
Analytic cond. $7.55224$
Root an. cond. $2.74813$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.92·3-s − 15.8·5-s − 17.8·7-s − 2.71·9-s − 52.9·11-s − 8.43·13-s − 78.1·15-s + 129.·17-s − 50.4·19-s − 87.9·21-s + 128.·23-s + 126.·25-s − 146.·27-s − 111.·29-s − 302.·31-s − 260.·33-s + 283.·35-s + 182.·37-s − 41.5·39-s − 94.5·41-s − 184.·43-s + 43.0·45-s + 296.·47-s − 24.1·49-s + 636.·51-s + 102.·53-s + 839.·55-s + ⋯
L(s)  = 1  + 0.948·3-s − 1.41·5-s − 0.964·7-s − 0.100·9-s − 1.45·11-s − 0.179·13-s − 1.34·15-s + 1.84·17-s − 0.609·19-s − 0.914·21-s + 1.16·23-s + 1.01·25-s − 1.04·27-s − 0.712·29-s − 1.75·31-s − 1.37·33-s + 1.36·35-s + 0.813·37-s − 0.170·39-s − 0.360·41-s − 0.654·43-s + 0.142·45-s + 0.921·47-s − 0.0704·49-s + 1.74·51-s + 0.266·53-s + 2.05·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(128\)    =    \(2^{7}\)
Sign: $-1$
Analytic conductor: \(7.55224\)
Root analytic conductor: \(2.74813\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 128,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 4.92T + 27T^{2} \)
5 \( 1 + 15.8T + 125T^{2} \)
7 \( 1 + 17.8T + 343T^{2} \)
11 \( 1 + 52.9T + 1.33e3T^{2} \)
13 \( 1 + 8.43T + 2.19e3T^{2} \)
17 \( 1 - 129.T + 4.91e3T^{2} \)
19 \( 1 + 50.4T + 6.85e3T^{2} \)
23 \( 1 - 128.T + 1.21e4T^{2} \)
29 \( 1 + 111.T + 2.43e4T^{2} \)
31 \( 1 + 302.T + 2.97e4T^{2} \)
37 \( 1 - 182.T + 5.06e4T^{2} \)
41 \( 1 + 94.5T + 6.89e4T^{2} \)
43 \( 1 + 184.T + 7.95e4T^{2} \)
47 \( 1 - 296.T + 1.03e5T^{2} \)
53 \( 1 - 102.T + 1.48e5T^{2} \)
59 \( 1 - 93.3T + 2.05e5T^{2} \)
61 \( 1 - 338.T + 2.26e5T^{2} \)
67 \( 1 + 489.T + 3.00e5T^{2} \)
71 \( 1 + 86.9T + 3.57e5T^{2} \)
73 \( 1 + 154.T + 3.89e5T^{2} \)
79 \( 1 + 449.T + 4.93e5T^{2} \)
83 \( 1 + 383.T + 5.71e5T^{2} \)
89 \( 1 + 517.T + 7.04e5T^{2} \)
97 \( 1 - 1.73e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57922595664834922018887791145, −11.35580316306259526163864712029, −10.20565474923032702876951015934, −9.010059726596423627200766680499, −7.932237006269247628069458834915, −7.34588040132094978657080488008, −5.45842832176487131941272740256, −3.68874375507197308008460118587, −2.88878975924974230801385065637, 0, 2.88878975924974230801385065637, 3.68874375507197308008460118587, 5.45842832176487131941272740256, 7.34588040132094978657080488008, 7.932237006269247628069458834915, 9.010059726596423627200766680499, 10.20565474923032702876951015934, 11.35580316306259526163864712029, 12.57922595664834922018887791145

Graph of the $Z$-function along the critical line