Properties

Label 2-2e6-64.45-c1-0-6
Degree $2$
Conductor $64$
Sign $0.234 + 0.972i$
Analytic cond. $0.511042$
Root an. cond. $0.714872$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.797 − 1.16i)2-s + (−0.894 − 1.33i)3-s + (−0.729 − 1.86i)4-s + (0.631 + 3.17i)5-s + (−2.27 − 0.0221i)6-s + (−0.127 − 0.306i)7-s + (−2.75 − 0.632i)8-s + (0.156 − 0.378i)9-s + (4.21 + 1.79i)10-s + (3.52 + 2.35i)11-s + (−1.84 + 2.64i)12-s + (−0.690 + 3.47i)13-s + (−0.459 − 0.0961i)14-s + (3.68 − 3.68i)15-s + (−2.93 + 2.71i)16-s + (−2.19 − 2.19i)17-s + ⋯
L(s)  = 1  + (0.563 − 0.826i)2-s + (−0.516 − 0.772i)3-s + (−0.364 − 0.931i)4-s + (0.282 + 1.41i)5-s + (−0.929 − 0.00903i)6-s + (−0.0480 − 0.116i)7-s + (−0.974 − 0.223i)8-s + (0.0522 − 0.126i)9-s + (1.33 + 0.566i)10-s + (1.06 + 0.710i)11-s + (−0.531 + 0.762i)12-s + (−0.191 + 0.963i)13-s + (−0.122 − 0.0256i)14-s + (0.951 − 0.951i)15-s + (−0.734 + 0.679i)16-s + (−0.531 − 0.531i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.234 + 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.234 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64\)    =    \(2^{6}\)
Sign: $0.234 + 0.972i$
Analytic conductor: \(0.511042\)
Root analytic conductor: \(0.714872\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{64} (45, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 64,\ (\ :1/2),\ 0.234 + 0.972i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.785349 - 0.618745i\)
\(L(\frac12)\) \(\approx\) \(0.785349 - 0.618745i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.797 + 1.16i)T \)
good3 \( 1 + (0.894 + 1.33i)T + (-1.14 + 2.77i)T^{2} \)
5 \( 1 + (-0.631 - 3.17i)T + (-4.61 + 1.91i)T^{2} \)
7 \( 1 + (0.127 + 0.306i)T + (-4.94 + 4.94i)T^{2} \)
11 \( 1 + (-3.52 - 2.35i)T + (4.20 + 10.1i)T^{2} \)
13 \( 1 + (0.690 - 3.47i)T + (-12.0 - 4.97i)T^{2} \)
17 \( 1 + (2.19 + 2.19i)T + 17iT^{2} \)
19 \( 1 + (6.74 + 1.34i)T + (17.5 + 7.27i)T^{2} \)
23 \( 1 + (0.672 + 0.278i)T + (16.2 + 16.2i)T^{2} \)
29 \( 1 + (-7.95 + 5.31i)T + (11.0 - 26.7i)T^{2} \)
31 \( 1 + 0.880iT - 31T^{2} \)
37 \( 1 + (5.44 - 1.08i)T + (34.1 - 14.1i)T^{2} \)
41 \( 1 + (-3.05 - 1.26i)T + (28.9 + 28.9i)T^{2} \)
43 \( 1 + (-1.59 + 2.38i)T + (-16.4 - 39.7i)T^{2} \)
47 \( 1 + (-3.23 - 3.23i)T + 47iT^{2} \)
53 \( 1 + (7.45 + 4.98i)T + (20.2 + 48.9i)T^{2} \)
59 \( 1 + (-0.795 - 3.99i)T + (-54.5 + 22.5i)T^{2} \)
61 \( 1 + (-2.62 - 3.92i)T + (-23.3 + 56.3i)T^{2} \)
67 \( 1 + (3.03 + 4.54i)T + (-25.6 + 61.8i)T^{2} \)
71 \( 1 + (-2.69 - 6.50i)T + (-50.2 + 50.2i)T^{2} \)
73 \( 1 + (-4.10 + 9.91i)T + (-51.6 - 51.6i)T^{2} \)
79 \( 1 + (1.54 - 1.54i)T - 79iT^{2} \)
83 \( 1 + (-14.5 - 2.89i)T + (76.6 + 31.7i)T^{2} \)
89 \( 1 + (1.64 - 0.679i)T + (62.9 - 62.9i)T^{2} \)
97 \( 1 - 2.43iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.44270246353677756545628866420, −13.58003631507389928890693456221, −12.27662157069489877788749232066, −11.55111294513324887145034483338, −10.48876981034590922586307948692, −9.318077013123285787482101920341, −6.76512932565563541281501152482, −6.45182494169950406040742421613, −4.19653919993674280550097044936, −2.20947340889011374350174719108, 4.12546774751672714710181406343, 5.15675297386782629712119833777, 6.24538646757300319781415669701, 8.286878358319551633412162234337, 9.085119722608036210124142813013, 10.66644952569460406000242018096, 12.22793563279850219545423835676, 12.95559105535265984521385139900, 14.15711884710982696402478758471, 15.44965960401862616321793095664

Graph of the $Z$-function along the critical line