Properties

Label 2-2e6-4.3-c12-0-8
Degree $2$
Conductor $64$
Sign $1$
Analytic cond. $58.4956$
Root an. cond. $7.64824$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.35e4·5-s + 5.31e5·9-s − 6.91e6·13-s − 4.72e7·17-s + 3.08e8·25-s + 1.73e8·29-s + 2.05e9·37-s − 2.28e9·41-s − 1.24e10·45-s + 1.38e10·49-s + 4.34e10·53-s + 4.78e10·61-s + 1.62e11·65-s − 1.19e11·73-s + 2.82e11·81-s + 1.11e12·85-s + 9.07e11·89-s + 5.02e11·97-s − 7.77e11·101-s + 3.14e12·109-s − 2.90e12·113-s − 3.67e12·117-s + ⋯
L(s)  = 1  − 1.50·5-s + 9-s − 1.43·13-s − 1.95·17-s + 1.26·25-s + 0.291·29-s + 0.799·37-s − 0.481·41-s − 1.50·45-s + 49-s + 1.96·53-s + 0.928·61-s + 2.15·65-s − 0.791·73-s + 81-s + 2.94·85-s + 1.82·89-s + 0.603·97-s − 0.732·101-s + 1.87·109-s − 1.39·113-s − 1.43·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64\)    =    \(2^{6}\)
Sign: $1$
Analytic conductor: \(58.4956\)
Root analytic conductor: \(7.64824\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: $\chi_{64} (63, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 64,\ (\ :6),\ 1)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(1.014417863\)
\(L(\frac12)\) \(\approx\) \(1.014417863\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
5 \( 1 + 23506 T + p^{12} T^{2} \)
7 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
11 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
13 \( 1 + 6911282 T + p^{12} T^{2} \)
17 \( 1 + 47295038 T + p^{12} T^{2} \)
19 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
23 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
29 \( 1 - 173439758 T + p^{12} T^{2} \)
31 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
37 \( 1 - 2050092718 T + p^{12} T^{2} \)
41 \( 1 + 2285065118 T + p^{12} T^{2} \)
43 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
47 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
53 \( 1 - 43462597358 T + p^{12} T^{2} \)
59 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
61 \( 1 - 47844884878 T + p^{12} T^{2} \)
67 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
71 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
73 \( 1 + 119852347678 T + p^{12} T^{2} \)
79 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
83 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
89 \( 1 - 907573615522 T + p^{12} T^{2} \)
97 \( 1 - 502341690242 T + p^{12} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.28981429367275219544847542069, −11.42481183376254618318339663856, −10.22702584728970049932946222590, −8.850730849914209307852509916236, −7.58467623789627058340656314710, −6.84708991657765450398641837994, −4.74770113374792869350757636604, −3.99211090848928084943702748038, −2.35088883422343064671288788093, −0.52868315052815219983932256660, 0.52868315052815219983932256660, 2.35088883422343064671288788093, 3.99211090848928084943702748038, 4.74770113374792869350757636604, 6.84708991657765450398641837994, 7.58467623789627058340656314710, 8.850730849914209307852509916236, 10.22702584728970049932946222590, 11.42481183376254618318339663856, 12.28981429367275219544847542069

Graph of the $Z$-function along the critical line