Properties

Label 2-2e6-1.1-c21-0-26
Degree $2$
Conductor $64$
Sign $1$
Analytic cond. $178.865$
Root an. cond. $13.3740$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.01e5·3-s + 2.11e7·5-s − 7.32e8·7-s + 3.02e10·9-s − 5.59e9·11-s + 6.30e10·13-s + 4.26e12·15-s + 1.35e13·17-s + 1.39e13·19-s − 1.47e14·21-s + 2.80e14·23-s − 2.92e13·25-s + 3.99e15·27-s − 1.19e15·29-s − 3.88e15·31-s − 1.12e15·33-s − 1.55e16·35-s − 2.72e16·37-s + 1.27e16·39-s − 6.89e16·41-s + 3.24e16·43-s + 6.40e17·45-s + 2.07e17·47-s − 2.12e16·49-s + 2.73e18·51-s + 6.38e17·53-s − 1.18e17·55-s + ⋯
L(s)  = 1  + 1.97·3-s + 0.968·5-s − 0.980·7-s + 2.89·9-s − 0.0650·11-s + 0.126·13-s + 1.91·15-s + 1.63·17-s + 0.520·19-s − 1.93·21-s + 1.41·23-s − 0.0614·25-s + 3.73·27-s − 0.528·29-s − 0.851·31-s − 0.128·33-s − 0.950·35-s − 0.929·37-s + 0.250·39-s − 0.802·41-s + 0.229·43-s + 2.80·45-s + 0.575·47-s − 0.0381·49-s + 3.21·51-s + 0.501·53-s − 0.0630·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64\)    =    \(2^{6}\)
Sign: $1$
Analytic conductor: \(178.865\)
Root analytic conductor: \(13.3740\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 64,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(6.703054839\)
\(L(\frac12)\) \(\approx\) \(6.703054839\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 2.01e5T + 1.04e10T^{2} \)
5 \( 1 - 2.11e7T + 4.76e14T^{2} \)
7 \( 1 + 7.32e8T + 5.58e17T^{2} \)
11 \( 1 + 5.59e9T + 7.40e21T^{2} \)
13 \( 1 - 6.30e10T + 2.47e23T^{2} \)
17 \( 1 - 1.35e13T + 6.90e25T^{2} \)
19 \( 1 - 1.39e13T + 7.14e26T^{2} \)
23 \( 1 - 2.80e14T + 3.94e28T^{2} \)
29 \( 1 + 1.19e15T + 5.13e30T^{2} \)
31 \( 1 + 3.88e15T + 2.08e31T^{2} \)
37 \( 1 + 2.72e16T + 8.55e32T^{2} \)
41 \( 1 + 6.89e16T + 7.38e33T^{2} \)
43 \( 1 - 3.24e16T + 2.00e34T^{2} \)
47 \( 1 - 2.07e17T + 1.30e35T^{2} \)
53 \( 1 - 6.38e17T + 1.62e36T^{2} \)
59 \( 1 + 3.04e18T + 1.54e37T^{2} \)
61 \( 1 - 5.64e18T + 3.10e37T^{2} \)
67 \( 1 + 3.96e18T + 2.22e38T^{2} \)
71 \( 1 - 2.61e19T + 7.52e38T^{2} \)
73 \( 1 - 1.37e19T + 1.34e39T^{2} \)
79 \( 1 - 1.18e20T + 7.08e39T^{2} \)
83 \( 1 + 1.60e19T + 1.99e40T^{2} \)
89 \( 1 + 2.30e20T + 8.65e40T^{2} \)
97 \( 1 - 2.72e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31728022644798280305942577104, −9.589843085457167446852231226221, −8.990199353601002112510680226372, −7.74360052509911893587382734346, −6.81431385355753537057894564296, −5.33365663763305894078015021883, −3.62211529653262414451134201227, −3.08484287373745402821383928592, −2.03550980936006776015138166825, −1.07971355146546805195637249869, 1.07971355146546805195637249869, 2.03550980936006776015138166825, 3.08484287373745402821383928592, 3.62211529653262414451134201227, 5.33365663763305894078015021883, 6.81431385355753537057894564296, 7.74360052509911893587382734346, 8.990199353601002112510680226372, 9.589843085457167446852231226221, 10.31728022644798280305942577104

Graph of the $Z$-function along the critical line