L(s) = 1 | + 7.98e3·3-s − 3.09e7·5-s + 9.17e7·7-s − 1.03e10·9-s − 8.72e10·11-s + 2.36e11·13-s − 2.47e11·15-s + 7.42e12·17-s − 4.68e9·19-s + 7.32e11·21-s + 3.33e14·23-s + 4.82e14·25-s − 1.66e14·27-s − 3.23e15·29-s + 6.40e15·31-s − 6.96e14·33-s − 2.84e15·35-s + 1.61e16·37-s + 1.89e15·39-s − 5.77e16·41-s + 2.01e17·43-s + 3.22e17·45-s + 6.62e17·47-s − 5.50e17·49-s + 5.92e16·51-s − 4.62e17·53-s + 2.70e18·55-s + ⋯ |
L(s) = 1 | + 0.0780·3-s − 1.41·5-s + 0.122·7-s − 0.993·9-s − 1.01·11-s + 0.476·13-s − 0.110·15-s + 0.893·17-s − 0.000175·19-s + 0.00958·21-s + 1.67·23-s + 1.01·25-s − 0.155·27-s − 1.43·29-s + 1.40·31-s − 0.0791·33-s − 0.174·35-s + 0.550·37-s + 0.0371·39-s − 0.671·41-s + 1.42·43-s + 1.40·45-s + 1.83·47-s − 0.984·49-s + 0.0697·51-s − 0.363·53-s + 1.43·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(11)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{23}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 7.98e3T + 1.04e10T^{2} \) |
| 5 | \( 1 + 3.09e7T + 4.76e14T^{2} \) |
| 7 | \( 1 - 9.17e7T + 5.58e17T^{2} \) |
| 11 | \( 1 + 8.72e10T + 7.40e21T^{2} \) |
| 13 | \( 1 - 2.36e11T + 2.47e23T^{2} \) |
| 17 | \( 1 - 7.42e12T + 6.90e25T^{2} \) |
| 19 | \( 1 + 4.68e9T + 7.14e26T^{2} \) |
| 23 | \( 1 - 3.33e14T + 3.94e28T^{2} \) |
| 29 | \( 1 + 3.23e15T + 5.13e30T^{2} \) |
| 31 | \( 1 - 6.40e15T + 2.08e31T^{2} \) |
| 37 | \( 1 - 1.61e16T + 8.55e32T^{2} \) |
| 41 | \( 1 + 5.77e16T + 7.38e33T^{2} \) |
| 43 | \( 1 - 2.01e17T + 2.00e34T^{2} \) |
| 47 | \( 1 - 6.62e17T + 1.30e35T^{2} \) |
| 53 | \( 1 + 4.62e17T + 1.62e36T^{2} \) |
| 59 | \( 1 + 7.39e18T + 1.54e37T^{2} \) |
| 61 | \( 1 - 5.50e18T + 3.10e37T^{2} \) |
| 67 | \( 1 + 6.03e18T + 2.22e38T^{2} \) |
| 71 | \( 1 + 4.43e19T + 7.52e38T^{2} \) |
| 73 | \( 1 + 2.48e19T + 1.34e39T^{2} \) |
| 79 | \( 1 - 5.70e19T + 7.08e39T^{2} \) |
| 83 | \( 1 - 1.31e20T + 1.99e40T^{2} \) |
| 89 | \( 1 - 3.97e20T + 8.65e40T^{2} \) |
| 97 | \( 1 + 9.80e20T + 5.27e41T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69035913502812953530251804004, −9.065678908902046208157008648789, −8.058714880046087243371645720675, −7.41903832460381214361052560317, −5.83941054492409710534094921380, −4.73795853420168985118704752497, −3.49201541015573995410367213458, −2.71534430857626152171552177089, −0.954235612069330949578786267748, 0,
0.954235612069330949578786267748, 2.71534430857626152171552177089, 3.49201541015573995410367213458, 4.73795853420168985118704752497, 5.83941054492409710534094921380, 7.41903832460381214361052560317, 8.058714880046087243371645720675, 9.065678908902046208157008648789, 10.69035913502812953530251804004