Properties

Label 2-2e5-8.5-c5-0-2
Degree $2$
Conductor $32$
Sign $0.666 + 0.745i$
Analytic cond. $5.13228$
Root an. cond. $2.26545$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.25i·3-s − 73.9i·5-s + 112.·7-s + 232.·9-s − 575. i·11-s − 117. i·13-s + 240.·15-s − 223.·17-s + 1.75e3i·19-s + 366. i·21-s − 2.36e3·23-s − 2.34e3·25-s + 1.54e3i·27-s + 3.86e3i·29-s + 1.59e3·31-s + ⋯
L(s)  = 1  + 0.208i·3-s − 1.32i·5-s + 0.869·7-s + 0.956·9-s − 1.43i·11-s − 0.193i·13-s + 0.276·15-s − 0.187·17-s + 1.11i·19-s + 0.181i·21-s − 0.930·23-s − 0.750·25-s + 0.408i·27-s + 0.853i·29-s + 0.297·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.666 + 0.745i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.666 + 0.745i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32\)    =    \(2^{5}\)
Sign: $0.666 + 0.745i$
Analytic conductor: \(5.13228\)
Root analytic conductor: \(2.26545\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{32} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 32,\ (\ :5/2),\ 0.666 + 0.745i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.51361 - 0.676744i\)
\(L(\frac12)\) \(\approx\) \(1.51361 - 0.676744i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 3.25iT - 243T^{2} \)
5 \( 1 + 73.9iT - 3.12e3T^{2} \)
7 \( 1 - 112.T + 1.68e4T^{2} \)
11 \( 1 + 575. iT - 1.61e5T^{2} \)
13 \( 1 + 117. iT - 3.71e5T^{2} \)
17 \( 1 + 223.T + 1.41e6T^{2} \)
19 \( 1 - 1.75e3iT - 2.47e6T^{2} \)
23 \( 1 + 2.36e3T + 6.43e6T^{2} \)
29 \( 1 - 3.86e3iT - 2.05e7T^{2} \)
31 \( 1 - 1.59e3T + 2.86e7T^{2} \)
37 \( 1 + 4.73e3iT - 6.93e7T^{2} \)
41 \( 1 - 8.15e3T + 1.15e8T^{2} \)
43 \( 1 - 4.92e3iT - 1.47e8T^{2} \)
47 \( 1 - 2.10e4T + 2.29e8T^{2} \)
53 \( 1 - 1.27e4iT - 4.18e8T^{2} \)
59 \( 1 + 1.41e4iT - 7.14e8T^{2} \)
61 \( 1 - 4.20e4iT - 8.44e8T^{2} \)
67 \( 1 - 5.41e4iT - 1.35e9T^{2} \)
71 \( 1 + 4.38e4T + 1.80e9T^{2} \)
73 \( 1 + 3.12e4T + 2.07e9T^{2} \)
79 \( 1 - 5.02e4T + 3.07e9T^{2} \)
83 \( 1 + 4.37e4iT - 3.93e9T^{2} \)
89 \( 1 - 6.44e4T + 5.58e9T^{2} \)
97 \( 1 + 6.23e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94691770462631846996029297219, −14.35133009338100467877881790601, −13.12246801330821239521998801843, −11.99240457682347783459635497562, −10.54519985194797584919174342405, −8.965111317482679452070749772155, −7.920009510989547500030322119696, −5.62557648523865038144034692479, −4.20531429105249763560298576626, −1.21401113985390081670342059595, 2.13819946288637623989555023354, 4.45266756426103196325240542233, 6.71610573358325930208941729867, 7.66147134868770394633779944625, 9.751953214143535884346290870259, 10.87926642551199050227714688080, 12.14803946239691533826786924394, 13.65670136627863458453981359873, 14.84535930821168705008994731390, 15.57228869940740915693637567202

Graph of the $Z$-function along the critical line