L(s) = 1 | + (−1.15e4 + 305. i)2-s + (−2.33e6 + 2.33e6i)3-s + (1.34e8 − 7.08e6i)4-s + (−3.25e9 − 3.25e9i)5-s + (2.62e10 − 2.77e10i)6-s − 4.57e11i·7-s + (−1.55e12 + 1.23e11i)8-s − 3.25e12i·9-s + (3.86e13 + 3.67e13i)10-s + (7.31e13 + 7.31e13i)11-s + (−2.96e14 + 3.29e14i)12-s + (−1.05e15 + 1.05e15i)13-s + (1.40e14 + 5.30e15i)14-s + 1.51e16·15-s + (1.79e16 − 1.89e15i)16-s − 3.52e16·17-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.0264i)2-s + (−0.844 + 0.844i)3-s + (0.998 − 0.0527i)4-s + (−1.19 − 1.19i)5-s + (0.822 − 0.866i)6-s − 1.78i·7-s + (−0.996 + 0.0791i)8-s − 0.426i·9-s + (1.22 + 1.16i)10-s + (0.638 + 0.638i)11-s + (−0.798 + 0.888i)12-s + (−0.962 + 0.962i)13-s + (0.0471 + 1.78i)14-s + 2.01·15-s + (0.994 − 0.105i)16-s − 0.863·17-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(0.959+0.283i)Λ(28−s)
Λ(s)=(=(16s/2ΓC(s+27/2)L(s)(0.959+0.283i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
0.959+0.283i
|
Analytic conductor: |
73.8968 |
Root analytic conductor: |
8.59633 |
Motivic weight: |
27 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :27/2), 0.959+0.283i)
|
Particular Values
L(14) |
≈ |
0.1882006014 |
L(21) |
≈ |
0.1882006014 |
L(229) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.15e4−305.i)T |
good | 3 | 1+(2.33e6−2.33e6i)T−7.62e12iT2 |
| 5 | 1+(3.25e9+3.25e9i)T+7.45e18iT2 |
| 7 | 1+4.57e11iT−6.57e22T2 |
| 11 | 1+(−7.31e13−7.31e13i)T+1.31e28iT2 |
| 13 | 1+(1.05e15−1.05e15i)T−1.19e30iT2 |
| 17 | 1+3.52e16T+1.66e33T2 |
| 19 | 1+(1.46e17−1.46e17i)T−3.36e34iT2 |
| 23 | 1+2.95e18iT−5.84e36T2 |
| 29 | 1+(3.27e19−3.27e19i)T−3.05e39iT2 |
| 31 | 1+7.52e18T+1.84e40T2 |
| 37 | 1+(2.52e20+2.52e20i)T+2.19e42iT2 |
| 41 | 1−3.98e21iT−3.50e43T2 |
| 43 | 1+(−1.03e22−1.03e22i)T+1.26e44iT2 |
| 47 | 1+2.78e22T+1.40e45T2 |
| 53 | 1+(3.83e21+3.83e21i)T+3.59e46iT2 |
| 59 | 1+(5.02e23+5.02e23i)T+6.50e47iT2 |
| 61 | 1+(1.45e24−1.45e24i)T−1.59e48iT2 |
| 67 | 1+(3.20e24−3.20e24i)T−2.01e49iT2 |
| 71 | 1−2.21e24iT−9.63e49T2 |
| 73 | 1+8.58e24iT−2.04e50T2 |
| 79 | 1−2.53e25T+1.72e51T2 |
| 83 | 1+(4.74e25−4.74e25i)T−6.53e51iT2 |
| 89 | 1+7.83e25iT−4.30e52T2 |
| 97 | 1+7.63e26T+4.39e53T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50619780979329794711634531148, −11.40338182265039640239719724107, −10.46664465519401972903965033134, −9.281659758834378174727742466825, −7.84216501236718746561661029171, −6.75175119584775595745174149304, −4.54819389286975199719249383992, −4.14834797819416378377998876988, −1.48390514784318482086041793254, −0.25104264059367360516441378788,
0.28873841765962768660857300375, 2.10221468058390167469479308397, 3.14749591947077518739565059629, 5.78121145912201627209838685157, 6.72870912013469932812011328265, 7.76089135811001065754497909522, 9.082062564590294671818408537813, 10.99350180190961756847165892795, 11.65990684705579430198211076366, 12.42591968720588945767893030576