L(s) = 1 | + (−1.14e4 − 1.81e3i)2-s + (1.53e5 + 1.53e5i)3-s + (1.27e8 + 4.15e7i)4-s + (2.87e9 − 2.87e9i)5-s + (−1.47e9 − 2.03e9i)6-s + 4.55e11i·7-s + (−1.38e12 − 7.07e11i)8-s − 7.57e12i·9-s + (−3.80e13 + 2.76e13i)10-s + (2.18e13 − 2.18e13i)11-s + (1.32e13 + 2.60e13i)12-s + (6.58e13 + 6.58e13i)13-s + (8.27e14 − 5.20e15i)14-s + 8.82e14·15-s + (1.45e16 + 1.06e16i)16-s + 3.33e16·17-s + ⋯ |
L(s) = 1 | + (−0.987 − 0.156i)2-s + (0.0556 + 0.0556i)3-s + (0.950 + 0.309i)4-s + (1.05 − 1.05i)5-s + (−0.0462 − 0.0636i)6-s + 1.77i·7-s + (−0.890 − 0.455i)8-s − 0.993i·9-s + (−1.20 + 0.873i)10-s + (0.190 − 0.190i)11-s + (0.0356 + 0.0701i)12-s + (0.0603 + 0.0603i)13-s + (0.278 − 1.75i)14-s + 0.117·15-s + (0.808 + 0.589i)16-s + 0.816·17-s + ⋯ |
Λ(s)=(=(16s/2ΓC(s)L(s)(0.971+0.235i)Λ(28−s)
Λ(s)=(=(16s/2ΓC(s+27/2)L(s)(0.971+0.235i)Λ(1−s)
Degree: |
2 |
Conductor: |
16
= 24
|
Sign: |
0.971+0.235i
|
Analytic conductor: |
73.8968 |
Root analytic conductor: |
8.59633 |
Motivic weight: |
27 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ16(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 16, ( :27/2), 0.971+0.235i)
|
Particular Values
L(14) |
≈ |
1.909271770 |
L(21) |
≈ |
1.909271770 |
L(229) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.14e4+1.81e3i)T |
good | 3 | 1+(−1.53e5−1.53e5i)T+7.62e12iT2 |
| 5 | 1+(−2.87e9+2.87e9i)T−7.45e18iT2 |
| 7 | 1−4.55e11iT−6.57e22T2 |
| 11 | 1+(−2.18e13+2.18e13i)T−1.31e28iT2 |
| 13 | 1+(−6.58e13−6.58e13i)T+1.19e30iT2 |
| 17 | 1−3.33e16T+1.66e33T2 |
| 19 | 1+(−2.22e17−2.22e17i)T+3.36e34iT2 |
| 23 | 1+4.14e18iT−5.84e36T2 |
| 29 | 1+(−1.87e19−1.87e19i)T+3.05e39iT2 |
| 31 | 1+5.35e19T+1.84e40T2 |
| 37 | 1+(1.64e21−1.64e21i)T−2.19e42iT2 |
| 41 | 1−3.79e21iT−3.50e43T2 |
| 43 | 1+(−4.06e21+4.06e21i)T−1.26e44iT2 |
| 47 | 1−3.33e22T+1.40e45T2 |
| 53 | 1+(7.44e22−7.44e22i)T−3.59e46iT2 |
| 59 | 1+(−3.85e23+3.85e23i)T−6.50e47iT2 |
| 61 | 1+(−3.77e23−3.77e23i)T+1.59e48iT2 |
| 67 | 1+(−1.29e24−1.29e24i)T+2.01e49iT2 |
| 71 | 1+1.59e25iT−9.63e49T2 |
| 73 | 1−1.45e25iT−2.04e50T2 |
| 79 | 1−3.96e25T+1.72e51T2 |
| 83 | 1+(2.74e25+2.74e25i)T+6.53e51iT2 |
| 89 | 1−1.01e26iT−4.30e52T2 |
| 97 | 1−5.84e26T+4.39e53T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.44283407546434527907263664617, −12.04196940716129625202403193662, −9.955923661993306853621185831382, −9.117982495180216329296650984198, −8.406932819724664413845543673308, −6.27673517944028928233801501935, −5.44110128094974632395916508806, −3.09353767280761871271290337562, −1.82755633013662156051619433355, −0.865206185336428637119140300180,
0.850575904183178792192576853660, 1.94876025603849599209867784113, 3.29760853300294552866258131228, 5.48347884687698229228726370071, 7.06165303233027603794112528232, 7.51259314933724282069589425105, 9.575790436158647142431013915554, 10.39426666181940888494137017447, 11.19501263564207131832419086566, 13.60080845158248424448084788127