Properties

Label 2-2e4-1.1-c25-0-3
Degree $2$
Conductor $16$
Sign $1$
Analytic cond. $63.3594$
Root an. cond. $7.95986$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.79e4·3-s + 3.41e8·5-s + 4.08e10·7-s − 8.37e11·9-s + 1.45e13·11-s + 8.78e13·13-s − 3.34e13·15-s − 2.65e15·17-s + 1.39e16·19-s − 4.00e15·21-s − 8.58e16·23-s − 1.81e17·25-s + 1.65e17·27-s + 2.08e18·29-s − 2.66e18·31-s − 1.42e18·33-s + 1.39e19·35-s − 5.13e19·37-s − 8.60e18·39-s + 2.33e20·41-s + 4.01e19·43-s − 2.85e20·45-s − 2.79e20·47-s + 3.30e20·49-s + 2.60e20·51-s + 4.25e20·53-s + 4.94e21·55-s + ⋯
L(s)  = 1  − 0.106·3-s + 0.624·5-s + 1.11·7-s − 0.988·9-s + 1.39·11-s + 1.04·13-s − 0.0664·15-s − 1.10·17-s + 1.45·19-s − 0.118·21-s − 0.816·23-s − 0.609·25-s + 0.211·27-s + 1.09·29-s − 0.607·31-s − 0.148·33-s + 0.697·35-s − 1.28·37-s − 0.111·39-s + 1.61·41-s + 0.153·43-s − 0.617·45-s − 0.351·47-s + 0.246·49-s + 0.117·51-s + 0.118·53-s + 0.870·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16\)    =    \(2^{4}\)
Sign: $1$
Analytic conductor: \(63.3594\)
Root analytic conductor: \(7.95986\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16,\ (\ :25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(2.878329400\)
\(L(\frac12)\) \(\approx\) \(2.878329400\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 3628 p^{3} T + p^{25} T^{2} \)
5 \( 1 - 13640214 p^{2} T + p^{25} T^{2} \)
7 \( 1 - 40882637368 T + p^{25} T^{2} \)
11 \( 1 - 119886135348 p^{2} T + p^{25} T^{2} \)
13 \( 1 - 87843989537006 T + p^{25} T^{2} \)
17 \( 1 + 156201521699214 p T + p^{25} T^{2} \)
19 \( 1 - 736811826531460 p T + p^{25} T^{2} \)
23 \( 1 + 3732729596697192 p T + p^{25} T^{2} \)
29 \( 1 - 2080230429601526910 T + p^{25} T^{2} \)
31 \( 1 + 2663532371302675232 T + p^{25} T^{2} \)
37 \( 1 + 51379607980315436218 T + p^{25} T^{2} \)
41 \( 1 - \)\(23\!\cdots\!22\)\( T + p^{25} T^{2} \)
43 \( 1 - 40133597094729613684 T + p^{25} T^{2} \)
47 \( 1 + \)\(27\!\cdots\!72\)\( T + p^{25} T^{2} \)
53 \( 1 - \)\(42\!\cdots\!26\)\( T + p^{25} T^{2} \)
59 \( 1 - \)\(83\!\cdots\!80\)\( T + p^{25} T^{2} \)
61 \( 1 - \)\(24\!\cdots\!62\)\( T + p^{25} T^{2} \)
67 \( 1 - \)\(12\!\cdots\!28\)\( T + p^{25} T^{2} \)
71 \( 1 - \)\(93\!\cdots\!88\)\( T + p^{25} T^{2} \)
73 \( 1 - \)\(40\!\cdots\!86\)\( T + p^{25} T^{2} \)
79 \( 1 - \)\(80\!\cdots\!80\)\( T + p^{25} T^{2} \)
83 \( 1 + \)\(89\!\cdots\!76\)\( T + p^{25} T^{2} \)
89 \( 1 - \)\(35\!\cdots\!90\)\( T + p^{25} T^{2} \)
97 \( 1 + \)\(86\!\cdots\!18\)\( T + p^{25} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.80151443094851795967417640563, −11.84165622855376208152891093725, −11.05326067697398938891461185431, −9.315139448915723247977548701247, −8.257520937008417841471232051112, −6.48098376477412601015058869585, −5.34533215264212542012033861633, −3.81468890268041168450712402979, −2.07720830743184260377037426933, −0.972156471475575857234318561735, 0.972156471475575857234318561735, 2.07720830743184260377037426933, 3.81468890268041168450712402979, 5.34533215264212542012033861633, 6.48098376477412601015058869585, 8.257520937008417841471232051112, 9.315139448915723247977548701247, 11.05326067697398938891461185431, 11.84165622855376208152891093725, 13.80151443094851795967417640563

Graph of the $Z$-function along the critical line