Properties

Label 2-2e4-1.1-c25-0-1
Degree $2$
Conductor $16$
Sign $1$
Analytic cond. $63.3594$
Root an. cond. $7.95986$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.75e6·3-s − 1.37e8·5-s + 3.04e10·7-s + 2.24e12·9-s − 2.58e12·11-s − 9.57e13·13-s + 2.40e14·15-s − 1.64e15·17-s − 4.95e15·19-s − 5.34e16·21-s + 1.07e16·23-s − 2.79e17·25-s − 2.45e18·27-s − 1.36e18·29-s + 4.41e18·31-s + 4.54e18·33-s − 4.16e18·35-s + 1.01e19·37-s + 1.68e20·39-s + 1.58e20·41-s − 1.83e20·43-s − 3.07e20·45-s − 1.40e21·47-s − 4.15e20·49-s + 2.89e21·51-s − 1.99e21·53-s + 3.54e20·55-s + ⋯
L(s)  = 1  − 1.90·3-s − 0.251·5-s + 0.830·7-s + 2.64·9-s − 0.248·11-s − 1.13·13-s + 0.479·15-s − 0.685·17-s − 0.513·19-s − 1.58·21-s + 0.102·23-s − 0.936·25-s − 3.14·27-s − 0.717·29-s + 1.00·31-s + 0.474·33-s − 0.208·35-s + 0.254·37-s + 2.17·39-s + 1.09·41-s − 0.700·43-s − 0.664·45-s − 1.76·47-s − 0.310·49-s + 1.30·51-s − 0.558·53-s + 0.0623·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16\)    =    \(2^{4}\)
Sign: $1$
Analytic conductor: \(63.3594\)
Root analytic conductor: \(7.95986\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16,\ (\ :25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(0.5901131402\)
\(L(\frac12)\) \(\approx\) \(0.5901131402\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 1.75e6T + 8.47e11T^{2} \)
5 \( 1 + 1.37e8T + 2.98e17T^{2} \)
7 \( 1 - 3.04e10T + 1.34e21T^{2} \)
11 \( 1 + 2.58e12T + 1.08e26T^{2} \)
13 \( 1 + 9.57e13T + 7.05e27T^{2} \)
17 \( 1 + 1.64e15T + 5.77e30T^{2} \)
19 \( 1 + 4.95e15T + 9.30e31T^{2} \)
23 \( 1 - 1.07e16T + 1.10e34T^{2} \)
29 \( 1 + 1.36e18T + 3.63e36T^{2} \)
31 \( 1 - 4.41e18T + 1.92e37T^{2} \)
37 \( 1 - 1.01e19T + 1.60e39T^{2} \)
41 \( 1 - 1.58e20T + 2.08e40T^{2} \)
43 \( 1 + 1.83e20T + 6.86e40T^{2} \)
47 \( 1 + 1.40e21T + 6.34e41T^{2} \)
53 \( 1 + 1.99e21T + 1.27e43T^{2} \)
59 \( 1 - 4.16e21T + 1.86e44T^{2} \)
61 \( 1 - 3.42e22T + 4.29e44T^{2} \)
67 \( 1 + 8.67e22T + 4.48e45T^{2} \)
71 \( 1 - 5.13e22T + 1.91e46T^{2} \)
73 \( 1 - 3.49e22T + 3.82e46T^{2} \)
79 \( 1 + 2.91e23T + 2.75e47T^{2} \)
83 \( 1 - 1.64e24T + 9.48e47T^{2} \)
89 \( 1 - 8.74e23T + 5.42e48T^{2} \)
97 \( 1 - 1.00e25T + 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00108795312898002748002726416, −11.83373950796997461601512574218, −11.10728760474328901753007745851, −9.906756360376971332201207381686, −7.72919487931930093605223924110, −6.47674008798368008279193010116, −5.18097272429796039104452829655, −4.37794473092975835173861452757, −1.87338149733849407912840329629, −0.44782006828610465679020928063, 0.44782006828610465679020928063, 1.87338149733849407912840329629, 4.37794473092975835173861452757, 5.18097272429796039104452829655, 6.47674008798368008279193010116, 7.72919487931930093605223924110, 9.906756360376971332201207381686, 11.10728760474328901753007745851, 11.83373950796997461601512574218, 13.00108795312898002748002726416

Graph of the $Z$-function along the critical line