Properties

Label 2-2e4-1.1-c21-0-5
Degree $2$
Conductor $16$
Sign $1$
Analytic cond. $44.7163$
Root an. cond. $6.68703$
Motivic weight $21$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.28e5·3-s + 2.16e7·5-s + 7.68e8·7-s + 6.14e9·9-s + 9.47e10·11-s − 8.06e10·13-s + 2.78e12·15-s + 3.05e12·17-s + 7.92e12·19-s + 9.89e13·21-s + 7.38e13·23-s − 8.50e12·25-s − 5.56e14·27-s − 4.25e15·29-s − 1.90e15·31-s + 1.22e16·33-s + 1.66e16·35-s + 2.21e16·37-s − 1.03e16·39-s − 2.06e16·41-s + 1.93e17·43-s + 1.32e17·45-s − 1.46e17·47-s + 3.13e16·49-s + 3.93e17·51-s + 2.03e18·53-s + 2.04e18·55-s + ⋯
L(s)  = 1  + 1.25·3-s + 0.991·5-s + 1.02·7-s + 0.587·9-s + 1.10·11-s − 0.162·13-s + 1.24·15-s + 0.367·17-s + 0.296·19-s + 1.29·21-s + 0.371·23-s − 0.0178·25-s − 0.520·27-s − 1.87·29-s − 0.416·31-s + 1.38·33-s + 1.01·35-s + 0.758·37-s − 0.204·39-s − 0.239·41-s + 1.36·43-s + 0.581·45-s − 0.407·47-s + 0.0562·49-s + 0.462·51-s + 1.60·53-s + 1.09·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16\)    =    \(2^{4}\)
Sign: $1$
Analytic conductor: \(44.7163\)
Root analytic conductor: \(6.68703\)
Motivic weight: \(21\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(4.628843537\)
\(L(\frac12)\) \(\approx\) \(4.628843537\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 4772 p^{3} T + p^{21} T^{2} \)
5 \( 1 - 865638 p^{2} T + p^{21} T^{2} \)
7 \( 1 - 109725544 p T + p^{21} T^{2} \)
11 \( 1 - 94724929188 T + p^{21} T^{2} \)
13 \( 1 + 6201676138 p T + p^{21} T^{2} \)
17 \( 1 - 179546054706 p T + p^{21} T^{2} \)
19 \( 1 - 416883597460 p T + p^{21} T^{2} \)
23 \( 1 - 73845437470344 T + p^{21} T^{2} \)
29 \( 1 + 4253031736469010 T + p^{21} T^{2} \)
31 \( 1 + 1900541176310432 T + p^{21} T^{2} \)
37 \( 1 - 22191429912035222 T + p^{21} T^{2} \)
41 \( 1 + 20622803144546358 T + p^{21} T^{2} \)
43 \( 1 - 193605854685795844 T + p^{21} T^{2} \)
47 \( 1 + 146960504315611632 T + p^{21} T^{2} \)
53 \( 1 - 2038267110310687206 T + p^{21} T^{2} \)
59 \( 1 - 5975882742742352820 T + p^{21} T^{2} \)
61 \( 1 - 6190617154478149262 T + p^{21} T^{2} \)
67 \( 1 + 16961315295446680052 T + p^{21} T^{2} \)
71 \( 1 - 5632758963952293528 T + p^{21} T^{2} \)
73 \( 1 + 43284759511102937494 T + p^{21} T^{2} \)
79 \( 1 - 51264938664949064560 T + p^{21} T^{2} \)
83 \( 1 + 48911854702961049156 T + p^{21} T^{2} \)
89 \( 1 + \)\(50\!\cdots\!30\)\( T + p^{21} T^{2} \)
97 \( 1 - \)\(80\!\cdots\!82\)\( T + p^{21} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.32368890264709780001280582216, −13.23670293184493619363397638593, −11.44236508297734892489302307278, −9.688799489044643196416150872307, −8.782511875212998542424449104675, −7.44044693381564311714203796866, −5.61052467767356011446947095405, −3.87451363565304382098854923957, −2.32446920990914596452098697305, −1.38570023789513565090355625811, 1.38570023789513565090355625811, 2.32446920990914596452098697305, 3.87451363565304382098854923957, 5.61052467767356011446947095405, 7.44044693381564311714203796866, 8.782511875212998542424449104675, 9.688799489044643196416150872307, 11.44236508297734892489302307278, 13.23670293184493619363397638593, 14.32368890264709780001280582216

Graph of the $Z$-function along the critical line