L(s) = 1 | + (−1.26 − 1.00i)2-s + (−1.57 − 0.360i)3-s + (0.137 + 0.602i)4-s + (1.77 − 2.23i)5-s + (1.63 + 2.04i)6-s + (−0.497 + 2.18i)7-s + (−0.970 + 2.01i)8-s + (−0.344 − 0.165i)9-s + (−4.50 + 1.02i)10-s + (1.56 + 3.25i)11-s − 1.00i·12-s + (3.81 − 1.83i)13-s + (2.82 − 2.25i)14-s + (−3.61 + 2.87i)15-s + (4.37 − 2.10i)16-s − 6.61i·17-s + ⋯ |
L(s) = 1 | + (−0.894 − 0.713i)2-s + (−0.910 − 0.207i)3-s + (0.0687 + 0.301i)4-s + (0.795 − 0.997i)5-s + (0.666 + 0.835i)6-s + (−0.188 + 0.823i)7-s + (−0.343 + 0.712i)8-s + (−0.114 − 0.0552i)9-s + (−1.42 + 0.324i)10-s + (0.473 + 0.982i)11-s − 0.288i·12-s + (1.05 − 0.509i)13-s + (0.755 − 0.602i)14-s + (−0.932 + 0.743i)15-s + (1.09 − 0.526i)16-s − 1.60i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.565 + 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.565 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.342283 - 0.649381i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.342283 - 0.649381i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (1.26 + 1.00i)T + (0.445 + 1.94i)T^{2} \) |
| 3 | \( 1 + (1.57 + 0.360i)T + (2.70 + 1.30i)T^{2} \) |
| 5 | \( 1 + (-1.77 + 2.23i)T + (-1.11 - 4.87i)T^{2} \) |
| 7 | \( 1 + (0.497 - 2.18i)T + (-6.30 - 3.03i)T^{2} \) |
| 11 | \( 1 + (-1.56 - 3.25i)T + (-6.85 + 8.60i)T^{2} \) |
| 13 | \( 1 + (-3.81 + 1.83i)T + (8.10 - 10.1i)T^{2} \) |
| 17 | \( 1 + 6.61iT - 17T^{2} \) |
| 19 | \( 1 + (-1.80 + 0.412i)T + (17.1 - 8.24i)T^{2} \) |
| 23 | \( 1 + (-2.01 - 2.53i)T + (-5.11 + 22.4i)T^{2} \) |
| 31 | \( 1 + (-0.852 - 0.679i)T + (6.89 + 30.2i)T^{2} \) |
| 37 | \( 1 + (-3.77 + 7.84i)T + (-23.0 - 28.9i)T^{2} \) |
| 41 | \( 1 - 2.85iT - 41T^{2} \) |
| 43 | \( 1 + (-2.16 + 1.72i)T + (9.56 - 41.9i)T^{2} \) |
| 47 | \( 1 + (3.03 + 6.30i)T + (-29.3 + 36.7i)T^{2} \) |
| 53 | \( 1 + (1.24 - 1.56i)T + (-11.7 - 51.6i)T^{2} \) |
| 59 | \( 1 + 5.09T + 59T^{2} \) |
| 61 | \( 1 + (1.57 + 0.360i)T + (54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + (9.43 + 4.54i)T + (41.7 + 52.3i)T^{2} \) |
| 71 | \( 1 + (-1.37 + 0.662i)T + (44.2 - 55.5i)T^{2} \) |
| 73 | \( 1 + (0.228 - 0.181i)T + (16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + (-2.20 + 4.58i)T + (-49.2 - 61.7i)T^{2} \) |
| 83 | \( 1 + (1.76 + 7.74i)T + (-74.7 + 36.0i)T^{2} \) |
| 89 | \( 1 + (6.80 + 5.42i)T + (19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + (-16.1 + 3.68i)T + (87.3 - 42.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.733870272012415570263868411257, −9.162370842504550555677295001881, −8.788685097889606404601797141284, −7.45087056790216727870595599880, −6.15880457349184427505200127908, −5.52465015843562092721002594166, −4.88789423283685519466120277982, −2.94544649406752009660325219996, −1.68945195948312917538974593688, −0.69014234808942724009505760267,
1.12224591260586076516398375538, 3.15002091747190172084854260823, 4.14631547233233011121354194394, 5.85907380631536199808338416122, 6.29738225671778748800591900477, 6.77077286010727967194812812327, 8.007244712473191471519482848725, 8.716194459782274668449473104541, 9.705958650576483894190154543394, 10.59031447001042043720734937713