L(s) = 1 | + (−1.41 − 0.628i)2-s + (0.261 + 0.290i)4-s + (−0.540 + 0.240i)5-s + (−0.706 + 0.150i)7-s + (0.768 + 2.36i)8-s + 0.915·10-s + (−3.10 + 1.16i)11-s + (0.164 + 1.56i)13-s + (1.09 + 0.232i)14-s + (0.483 − 4.60i)16-s + (3.71 + 2.69i)17-s + (0.775 + 2.38i)19-s + (−0.211 − 0.0940i)20-s + (5.11 + 0.300i)22-s + (−2.22 + 3.85i)23-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.444i)2-s + (0.130 + 0.145i)4-s + (−0.241 + 0.107i)5-s + (−0.266 + 0.0567i)7-s + (0.271 + 0.836i)8-s + 0.289·10-s + (−0.935 + 0.352i)11-s + (0.0456 + 0.434i)13-s + (0.291 + 0.0620i)14-s + (0.120 − 1.15i)16-s + (0.901 + 0.654i)17-s + (0.177 + 0.547i)19-s + (−0.0472 − 0.0210i)20-s + (1.09 + 0.0641i)22-s + (−0.464 + 0.803i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.436 - 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.436 - 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.403012 + 0.252516i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.403012 + 0.252516i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (3.10 - 1.16i)T \) |
good | 2 | \( 1 + (1.41 + 0.628i)T + (1.33 + 1.48i)T^{2} \) |
| 5 | \( 1 + (0.540 - 0.240i)T + (3.34 - 3.71i)T^{2} \) |
| 7 | \( 1 + (0.706 - 0.150i)T + (6.39 - 2.84i)T^{2} \) |
| 13 | \( 1 + (-0.164 - 1.56i)T + (-12.7 + 2.70i)T^{2} \) |
| 17 | \( 1 + (-3.71 - 2.69i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.775 - 2.38i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (2.22 - 3.85i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.82 + 1.45i)T + (26.4 - 11.7i)T^{2} \) |
| 31 | \( 1 + (-0.954 - 9.07i)T + (-30.3 + 6.44i)T^{2} \) |
| 37 | \( 1 + (-0.893 + 2.75i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.12 + 0.239i)T + (37.4 + 16.6i)T^{2} \) |
| 43 | \( 1 + (-2.10 - 3.64i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.152 + 0.169i)T + (-4.91 - 46.7i)T^{2} \) |
| 53 | \( 1 + (4.61 - 3.35i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (4.77 + 5.30i)T + (-6.16 + 58.6i)T^{2} \) |
| 61 | \( 1 + (0.476 - 4.53i)T + (-59.6 - 12.6i)T^{2} \) |
| 67 | \( 1 + (-4.04 + 7.00i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (9.95 + 7.23i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.78 + 14.7i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (13.3 + 5.94i)T + (52.8 + 58.7i)T^{2} \) |
| 83 | \( 1 + (0.726 - 6.91i)T + (-81.1 - 17.2i)T^{2} \) |
| 89 | \( 1 + 12.4T + 89T^{2} \) |
| 97 | \( 1 + (-12.9 - 5.76i)T + (64.9 + 72.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.76025197880904804674866572502, −10.69380848777246416744087254774, −10.07562641623576271057163019965, −9.272374425073652221048334610704, −8.149926998053267018289362164545, −7.53600187686861884175768329983, −6.00334882623448347580755581453, −4.84203869893726838497429109557, −3.21182932466695042573168020921, −1.62876219064935473984843638185,
0.50341543795173691847549810311, 2.92324195812257398510869556306, 4.40697847781914967461035667835, 5.81801396934769171154164141772, 7.01496968449918782129055232548, 7.977612835752765739937617236840, 8.487158414405044612571664126456, 9.784192958484748507850560825664, 10.22337779848379931473008991991, 11.46593839087442896034255775287