L(s) = 1 | + (0.255 − 0.283i)2-s + (0.193 + 1.84i)4-s + (0.827 + 0.918i)5-s + (−0.913 − 0.406i)7-s + (1.19 + 0.865i)8-s + 0.472·10-s + (−2.70 + 1.91i)11-s + (6.33 + 1.34i)13-s + (−0.348 + 0.155i)14-s + (−3.07 + 0.654i)16-s + (−1.5 + 4.61i)17-s + (−0.809 − 0.587i)19-s + (−1.53 + 1.70i)20-s + (−0.146 + 1.25i)22-s + (2.30 − 3.99i)23-s + ⋯ |
L(s) = 1 | + (0.180 − 0.200i)2-s + (0.0969 + 0.921i)4-s + (0.369 + 0.410i)5-s + (−0.345 − 0.153i)7-s + (0.421 + 0.305i)8-s + 0.149·10-s + (−0.815 + 0.578i)11-s + (1.75 + 0.373i)13-s + (−0.0932 + 0.0415i)14-s + (−0.769 + 0.163i)16-s + (−0.363 + 1.11i)17-s + (−0.185 − 0.134i)19-s + (−0.342 + 0.380i)20-s + (−0.0312 + 0.268i)22-s + (0.481 − 0.833i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.31039 + 0.678145i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31039 + 0.678145i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (2.70 - 1.91i)T \) |
good | 2 | \( 1 + (-0.255 + 0.283i)T + (-0.209 - 1.98i)T^{2} \) |
| 5 | \( 1 + (-0.827 - 0.918i)T + (-0.522 + 4.97i)T^{2} \) |
| 7 | \( 1 + (0.913 + 0.406i)T + (4.68 + 5.20i)T^{2} \) |
| 13 | \( 1 + (-6.33 - 1.34i)T + (11.8 + 5.28i)T^{2} \) |
| 17 | \( 1 + (1.5 - 4.61i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-2.30 + 3.99i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.43 - 1.97i)T + (19.4 + 21.5i)T^{2} \) |
| 31 | \( 1 + (0.604 + 0.128i)T + (28.3 + 12.6i)T^{2} \) |
| 37 | \( 1 + (-4.11 + 2.99i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-2.30 + 1.02i)T + (27.4 - 30.4i)T^{2} \) |
| 43 | \( 1 + (0.927 + 1.60i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.24 + 11.8i)T + (-45.9 - 9.77i)T^{2} \) |
| 53 | \( 1 + (1.26 + 3.88i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-0.169 - 1.60i)T + (-57.7 + 12.2i)T^{2} \) |
| 61 | \( 1 + (10.6 - 2.25i)T + (55.7 - 24.8i)T^{2} \) |
| 67 | \( 1 + (3 - 5.19i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.899 + 2.76i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-0.118 + 0.0857i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-7.06 + 7.84i)T + (-8.25 - 78.5i)T^{2} \) |
| 83 | \( 1 + (9.55 - 2.03i)T + (75.8 - 33.7i)T^{2} \) |
| 89 | \( 1 - 6.76T + 89T^{2} \) |
| 97 | \( 1 + (-4.01 + 4.45i)T + (-10.1 - 96.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97325228356527272426219917433, −10.83744575264338527736676402989, −10.38481541691586738205469884848, −8.860969953078241159178958575481, −8.195729192549163644329308282772, −6.93909597396421758829258013687, −6.15288202498077948082343695202, −4.51298057008392313957410106497, −3.45892364458785405794320964675, −2.19214868205228066414876469208,
1.16524693250119384680319082567, 3.02377680108755967950666369772, 4.71478020238401339815520848352, 5.73191512180616323252228771698, 6.34821450145739813590314455584, 7.74499388224996139605978064741, 8.949934021101018249860712627022, 9.662455527653611132415820971939, 10.81924220679157519623877246626, 11.30255594766115160054473229556