L(s) = 1 | + (1 − 1.73i)4-s + (0.813 + 0.469i)5-s + (2.87 − 1.65i)11-s + (−1.99 − 3.46i)16-s + (1.62 − 0.939i)20-s + (2.87 + 1.65i)23-s + (−2.05 − 3.56i)25-s + (−3.05 + 5.29i)31-s + 12.1·37-s − 6.63i·44-s + (−11.8 + 6.85i)47-s + (−3.5 + 6.06i)49-s + 11.8i·53-s + 3.11·55-s + (−12.6 − 7.32i)59-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)4-s + (0.363 + 0.210i)5-s + (0.866 − 0.500i)11-s + (−0.499 − 0.866i)16-s + (0.363 − 0.210i)20-s + (0.598 + 0.345i)23-s + (−0.411 − 0.713i)25-s + (−0.549 + 0.951i)31-s + 1.99·37-s − 1.00i·44-s + (−1.73 + 0.999i)47-s + (−0.5 + 0.866i)49-s + 1.62i·53-s + 0.420·55-s + (−1.65 − 0.953i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.800 + 0.598i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.800 + 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46407 - 0.486729i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46407 - 0.486729i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-2.87 + 1.65i)T \) |
good | 2 | \( 1 + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.813 - 0.469i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-2.87 - 1.65i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.05 - 5.29i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 12.1T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (11.8 - 6.85i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 11.8iT - 53T^{2} \) |
| 59 | \( 1 + (12.6 + 7.32i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.55 - 13.0i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 10.8iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 16.5iT - 89T^{2} \) |
| 97 | \( 1 + (0.0584 + 0.101i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41385648539413257840844003934, −10.84103534238292678482085947163, −9.775529434110149219900547061564, −9.090280762694807270931781127515, −7.69372026952203388279995885158, −6.49932726519668840934007904059, −5.92553546542967692245899095663, −4.60853041874035947972088376335, −2.95127816312683059618374824394, −1.40501905323896177182896856443,
1.92744279389285753421860503538, 3.39780115576335479465276021166, 4.58869607639560251570757244828, 6.07981394777200980670435904824, 7.02184544327875127960369739447, 7.963237173800474893054123151582, 9.031022694687657522276005099475, 9.859529482838263651671773513681, 11.21107776861199286983061118382, 11.75540801316782644753043591458