Properties

Label 2-297-99.25-c1-0-3
Degree $2$
Conductor $297$
Sign $-0.0768 - 0.997i$
Analytic cond. $2.37155$
Root an. cond. $1.53998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.161 + 1.53i)2-s + (−0.382 + 0.0811i)4-s + (0.0618 − 0.588i)5-s + (0.483 + 0.536i)7-s + (0.768 + 2.36i)8-s + 0.915·10-s + (2.56 + 2.10i)11-s + (−1.43 − 0.640i)13-s + (−0.746 + 0.829i)14-s + (−4.22 + 1.88i)16-s + (3.71 + 2.69i)17-s + (0.775 + 2.38i)19-s + (0.0241 + 0.229i)20-s + (−2.82 + 4.28i)22-s + (−2.22 − 3.85i)23-s + ⋯
L(s)  = 1  + (0.114 + 1.08i)2-s + (−0.191 + 0.0405i)4-s + (0.0276 − 0.263i)5-s + (0.182 + 0.202i)7-s + (0.271 + 0.836i)8-s + 0.289·10-s + (0.773 + 0.634i)11-s + (−0.399 − 0.177i)13-s + (−0.199 + 0.221i)14-s + (−1.05 + 0.470i)16-s + (0.901 + 0.654i)17-s + (0.177 + 0.547i)19-s + (0.00540 + 0.0514i)20-s + (−0.601 + 0.913i)22-s + (−0.464 − 0.803i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0768 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0768 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(297\)    =    \(3^{3} \cdot 11\)
Sign: $-0.0768 - 0.997i$
Analytic conductor: \(2.37155\)
Root analytic conductor: \(1.53998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{297} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 297,\ (\ :1/2),\ -0.0768 - 0.997i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.05436 + 1.13876i\)
\(L(\frac12)\) \(\approx\) \(1.05436 + 1.13876i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + (-2.56 - 2.10i)T \)
good2 \( 1 + (-0.161 - 1.53i)T + (-1.95 + 0.415i)T^{2} \)
5 \( 1 + (-0.0618 + 0.588i)T + (-4.89 - 1.03i)T^{2} \)
7 \( 1 + (-0.483 - 0.536i)T + (-0.731 + 6.96i)T^{2} \)
13 \( 1 + (1.43 + 0.640i)T + (8.69 + 9.66i)T^{2} \)
17 \( 1 + (-3.71 - 2.69i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (-0.775 - 2.38i)T + (-15.3 + 11.1i)T^{2} \)
23 \( 1 + (2.22 + 3.85i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (4.66 + 5.18i)T + (-3.03 + 28.8i)T^{2} \)
31 \( 1 + (8.33 + 3.71i)T + (20.7 + 23.0i)T^{2} \)
37 \( 1 + (-0.893 + 2.75i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (-0.772 + 0.857i)T + (-4.28 - 40.7i)T^{2} \)
43 \( 1 + (-2.10 + 3.64i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (0.222 + 0.0473i)T + (42.9 + 19.1i)T^{2} \)
53 \( 1 + (4.61 - 3.35i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (-6.97 + 1.48i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (-4.16 + 1.85i)T + (40.8 - 45.3i)T^{2} \)
67 \( 1 + (-4.04 - 7.00i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (9.95 + 7.23i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-4.78 + 14.7i)T + (-59.0 - 42.9i)T^{2} \)
79 \( 1 + (-1.52 - 14.5i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-6.35 + 2.82i)T + (55.5 - 61.6i)T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 + (1.48 + 14.1i)T + (-94.8 + 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.12570871960175688940098567335, −11.12344397735371212821171723073, −9.993811198208170341402713415836, −8.937789953667192319098578564162, −7.936499774741107766434260083048, −7.17782456215027753602991157245, −6.06970310788776742673109305510, −5.26403063495356088363402200951, −3.99485803099802237803374090488, −1.99812667945740083865842198627, 1.33726877035637819449937128583, 2.91297947744653486274736301593, 3.84341003433951708751758765932, 5.26556758169028005686574277799, 6.72660232591305429426967139206, 7.53523528493893281878380018017, 9.045470917691270380228457417826, 9.794196945823787884104841826524, 10.87694317187224996045117364228, 11.40374971133478305286919864809

Graph of the $Z$-function along the critical line