L(s) = 1 | + (1 − 1.73i)4-s + (−1.5 + 2.59i)5-s + (2 + 3.46i)7-s + (0.5 + 0.866i)11-s + (−1 + 1.73i)13-s + (−1.99 − 3.46i)16-s + 6·17-s + 2·19-s + (3 + 5.19i)20-s + (1.5 − 2.59i)23-s + (−2 − 3.46i)25-s + 7.99·28-s + (−3 − 5.19i)29-s + (−4 + 6.92i)31-s − 12·35-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)4-s + (−0.670 + 1.16i)5-s + (0.755 + 1.30i)7-s + (0.150 + 0.261i)11-s + (−0.277 + 0.480i)13-s + (−0.499 − 0.866i)16-s + 1.45·17-s + 0.458·19-s + (0.670 + 1.16i)20-s + (0.312 − 0.541i)23-s + (−0.400 − 0.692i)25-s + 1.51·28-s + (−0.557 − 0.964i)29-s + (−0.718 + 1.24i)31-s − 2.02·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.29952 + 0.472990i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29952 + 0.472990i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.5 - 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-2 - 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 6T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4 - 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4 + 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.5 - 2.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 3T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.5 + 11.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 2T + 73T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (9 + 15.5i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70976840224178657645255304602, −11.06604717898899859312658473439, −10.13285004614896473390972268123, −9.143899373925332674364886818872, −7.84407403359628160909987312779, −6.99411788708267933737730978084, −5.91933809565732762678394874742, −4.96750753260414997550522412980, −3.18895724760629212409882567965, −1.95645976579469289711952343714,
1.18288470684720682365807688112, 3.40337086461650862084060922825, 4.29692155081749853412246097558, 5.45222262379005889363150632727, 7.26346311317985676759872702551, 7.74964898218221678158799336440, 8.479493175686953196774443449814, 9.766138619873537607499634856535, 11.02416648215562685265395079788, 11.64283768159508618847728196554