Properties

Label 2-297-297.149-c1-0-6
Degree $2$
Conductor $297$
Sign $-0.975 - 0.221i$
Analytic cond. $2.37155$
Root an. cond. $1.53998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.376i)2-s + (−1.13 + 1.31i)3-s + (−0.759 + 1.12i)4-s + (1.77 + 2.84i)5-s + (0.307 − 1.35i)6-s + (1.17 + 4.10i)7-s + (0.281 − 2.67i)8-s + (−0.440 − 2.96i)9-s + (−2.32 − 1.34i)10-s + (1.99 + 2.65i)11-s + (−0.617 − 2.26i)12-s + (−0.675 − 4.80i)13-s + (−2.37 − 2.46i)14-s + (−5.73 − 0.885i)15-s + (−0.209 − 0.518i)16-s + (3.53 + 3.92i)17-s + ⋯
L(s)  = 1  + (−0.500 + 0.266i)2-s + (−0.653 + 0.757i)3-s + (−0.379 + 0.562i)4-s + (0.794 + 1.27i)5-s + (0.125 − 0.552i)6-s + (0.445 + 1.55i)7-s + (0.0994 − 0.946i)8-s + (−0.146 − 0.989i)9-s + (−0.735 − 0.424i)10-s + (0.601 + 0.799i)11-s + (−0.178 − 0.655i)12-s + (−0.187 − 1.33i)13-s + (−0.635 − 0.658i)14-s + (−1.48 − 0.228i)15-s + (−0.0523 − 0.129i)16-s + (0.856 + 0.951i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 - 0.221i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 297 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.975 - 0.221i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(297\)    =    \(3^{3} \cdot 11\)
Sign: $-0.975 - 0.221i$
Analytic conductor: \(2.37155\)
Root analytic conductor: \(1.53998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{297} (149, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 297,\ (\ :1/2),\ -0.975 - 0.221i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0943234 + 0.841793i\)
\(L(\frac12)\) \(\approx\) \(0.0943234 + 0.841793i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.13 - 1.31i)T \)
11 \( 1 + (-1.99 - 2.65i)T \)
good2 \( 1 + (0.707 - 0.376i)T + (1.11 - 1.65i)T^{2} \)
5 \( 1 + (-1.77 - 2.84i)T + (-2.19 + 4.49i)T^{2} \)
7 \( 1 + (-1.17 - 4.10i)T + (-5.93 + 3.70i)T^{2} \)
13 \( 1 + (0.675 + 4.80i)T + (-12.4 + 3.58i)T^{2} \)
17 \( 1 + (-3.53 - 3.92i)T + (-1.77 + 16.9i)T^{2} \)
19 \( 1 + (1.55 + 0.163i)T + (18.5 + 3.95i)T^{2} \)
23 \( 1 + (1.01 + 2.79i)T + (-17.6 + 14.7i)T^{2} \)
29 \( 1 + (-1.53 - 1.48i)T + (1.01 + 28.9i)T^{2} \)
31 \( 1 + (3.86 + 4.94i)T + (-7.49 + 30.0i)T^{2} \)
37 \( 1 + (1.10 + 10.5i)T + (-36.1 + 7.69i)T^{2} \)
41 \( 1 + (-3.87 + 3.74i)T + (1.43 - 40.9i)T^{2} \)
43 \( 1 + (-3.85 - 4.58i)T + (-7.46 + 42.3i)T^{2} \)
47 \( 1 + (-4.82 + 3.25i)T + (17.6 - 43.5i)T^{2} \)
53 \( 1 + (-4.45 + 1.44i)T + (42.8 - 31.1i)T^{2} \)
59 \( 1 + (0.230 - 3.29i)T + (-58.4 - 8.21i)T^{2} \)
61 \( 1 + (1.83 + 1.43i)T + (14.7 + 59.1i)T^{2} \)
67 \( 1 + (0.546 - 3.09i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (2.09 - 1.88i)T + (7.42 - 70.6i)T^{2} \)
73 \( 1 + (0.100 - 0.225i)T + (-48.8 - 54.2i)T^{2} \)
79 \( 1 + (-5.33 - 10.0i)T + (-44.1 + 65.4i)T^{2} \)
83 \( 1 + (-5.35 - 0.752i)T + (79.7 + 22.8i)T^{2} \)
89 \( 1 + (13.5 - 7.79i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (10.2 + 6.39i)T + (42.5 + 87.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32228732093254915406582103136, −11.00856253589352862788091789846, −10.19354702598989188850275629236, −9.477370945931004877840218507004, −8.585523903438288339202687099606, −7.36759542589033319443898014525, −6.13753596998535719561157678958, −5.47125894240831815378971903044, −3.89746366502031307511934040206, −2.55146260237257626956904697965, 0.910783763259474680693522327616, 1.58812622030980212185333449842, 4.43435878565846822805236120439, 5.22936863475777075382230578851, 6.31688259769264473864470707032, 7.50722177999468483745563997650, 8.623089289111345850680330903554, 9.471583734021112444941154860056, 10.37221007887943212976625764034, 11.30564159416137391098558662764

Graph of the $Z$-function along the critical line