L(s) = 1 | + 1.59·3-s + 5-s − 4.50·7-s − 0.463·9-s + 5.01·11-s − 0.0423·13-s + 1.59·15-s − 3.74·17-s + 5.42·19-s − 7.17·21-s + 4.97·23-s + 25-s − 5.51·27-s + 4.97·29-s + 4.62·31-s + 7.98·33-s − 4.50·35-s − 37-s − 0.0674·39-s + 5.01·41-s − 0.112·43-s − 0.463·45-s + 1.60·47-s + 13.2·49-s − 5.96·51-s − 10.8·53-s + 5.01·55-s + ⋯ |
L(s) = 1 | + 0.919·3-s + 0.447·5-s − 1.70·7-s − 0.154·9-s + 1.51·11-s − 0.0117·13-s + 0.411·15-s − 0.908·17-s + 1.24·19-s − 1.56·21-s + 1.03·23-s + 0.200·25-s − 1.06·27-s + 0.923·29-s + 0.830·31-s + 1.39·33-s − 0.761·35-s − 0.164·37-s − 0.0108·39-s + 0.783·41-s − 0.0171·43-s − 0.0690·45-s + 0.234·47-s + 1.89·49-s − 0.835·51-s − 1.49·53-s + 0.676·55-s + ⋯ |
Λ(s)=(=(2960s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2960s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.427340303 |
L(21) |
≈ |
2.427340303 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 37 | 1+T |
good | 3 | 1−1.59T+3T2 |
| 7 | 1+4.50T+7T2 |
| 11 | 1−5.01T+11T2 |
| 13 | 1+0.0423T+13T2 |
| 17 | 1+3.74T+17T2 |
| 19 | 1−5.42T+19T2 |
| 23 | 1−4.97T+23T2 |
| 29 | 1−4.97T+29T2 |
| 31 | 1−4.62T+31T2 |
| 41 | 1−5.01T+41T2 |
| 43 | 1+0.112T+43T2 |
| 47 | 1−1.60T+47T2 |
| 53 | 1+10.8T+53T2 |
| 59 | 1−9.19T+59T2 |
| 61 | 1+8.80T+61T2 |
| 67 | 1+0.203T+67T2 |
| 71 | 1−13.3T+71T2 |
| 73 | 1−7.45T+73T2 |
| 79 | 1+6.13T+79T2 |
| 83 | 1−17.6T+83T2 |
| 89 | 1−17.1T+89T2 |
| 97 | 1+4.13T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.106306797431896505056875716339, −8.145818871767513569312603451342, −7.06741574233738803360175053058, −6.53804098740504834081467345659, −5.95465162516394125603627833713, −4.76268660268179950266234507624, −3.65036214397222232239846010032, −3.15117425739817709490130486258, −2.33804573798431334728166562072, −0.923568043368975551631184026104,
0.923568043368975551631184026104, 2.33804573798431334728166562072, 3.15117425739817709490130486258, 3.65036214397222232239846010032, 4.76268660268179950266234507624, 5.95465162516394125603627833713, 6.53804098740504834081467345659, 7.06741574233738803360175053058, 8.145818871767513569312603451342, 9.106306797431896505056875716339