L(s) = 1 | + (−0.0817 − 1.41i)2-s + (2.54 − 1.46i)3-s + (−1.98 + 0.230i)4-s + (2.01 + 3.48i)5-s + (−2.28 − 3.46i)6-s + (0.477 + 0.827i)7-s + (0.488 + 2.78i)8-s + (2.80 − 4.86i)9-s + (4.75 − 3.12i)10-s − 0.266i·11-s + (−4.71 + 3.50i)12-s + (−2.19 − 3.80i)13-s + (1.12 − 0.742i)14-s + (10.2 + 5.91i)15-s + (3.89 − 0.916i)16-s + (−4.25 − 2.45i)17-s + ⋯ |
L(s) = 1 | + (−0.0577 − 0.998i)2-s + (1.46 − 0.847i)3-s + (−0.993 + 0.115i)4-s + (0.900 + 1.55i)5-s + (−0.930 − 1.41i)6-s + (0.180 + 0.312i)7-s + (0.172 + 0.985i)8-s + (0.936 − 1.62i)9-s + (1.50 − 0.988i)10-s − 0.0802i·11-s + (−1.36 + 1.01i)12-s + (−0.609 − 1.05i)13-s + (0.301 − 0.198i)14-s + (2.64 + 1.52i)15-s + (0.973 − 0.229i)16-s + (−1.03 − 0.596i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.319 + 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.319 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.59849 - 1.14736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.59849 - 1.14736i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0817 + 1.41i)T \) |
| 37 | \( 1 + (-0.468 + 6.06i)T \) |
good | 3 | \( 1 + (-2.54 + 1.46i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-2.01 - 3.48i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.477 - 0.827i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 0.266iT - 11T^{2} \) |
| 13 | \( 1 + (2.19 + 3.80i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (4.25 + 2.45i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.537 + 0.930i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 4.38iT - 23T^{2} \) |
| 29 | \( 1 + 9.06T + 29T^{2} \) |
| 31 | \( 1 - 3.47iT - 31T^{2} \) |
| 41 | \( 1 + (-2.60 - 4.50i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 2.65T + 43T^{2} \) |
| 47 | \( 1 - 9.88T + 47T^{2} \) |
| 53 | \( 1 + (-0.693 - 0.400i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.03 + 10.4i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.97 + 5.14i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (11.7 - 6.80i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.67 - 2.90i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 2.12T + 73T^{2} \) |
| 79 | \( 1 + (4.72 - 2.72i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-12.7 - 7.37i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (5.07 + 2.93i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 1.93iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.48811404033369403134433018658, −10.60760351160042910871053750578, −9.619693710215545924960434200646, −9.001727473064542176612330150166, −7.76206800519885903492184087349, −7.03395400283397085781505102524, −5.57175912481105218365298170653, −3.53638266501953771268995349390, −2.64777784479588723606839451212, −2.02033043894690312193861483767,
1.98837191199360474635983251502, 4.22439086241956664076766395887, 4.54703609918345888056472990702, 5.86977069771372393449202645146, 7.37842013588569993557453988381, 8.479483096139191278289132407230, 9.003326773469337925779238059706, 9.510949243846167760993199052270, 10.42797487261372752466066569181, 12.40181625053716824873862289696