L(s) = 1 | + (−2 − 3.46i)2-s + (4.5 − 7.79i)3-s + (−7.99 + 13.8i)4-s + (−23.4 − 40.6i)5-s − 36·6-s + 63.9·8-s + (−40.5 − 70.1i)9-s + (−93.8 + 162. i)10-s + (43.7 − 75.7i)11-s + (72 + 124. i)12-s + 754.·13-s − 422.·15-s + (−128 − 221. i)16-s + (724. − 1.25e3i)17-s + (−162 + 280. i)18-s + (−1.27e3 − 2.19e3i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.419 − 0.727i)5-s − 0.408·6-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.296 + 0.514i)10-s + (0.108 − 0.188i)11-s + (0.144 + 0.249i)12-s + 1.23·13-s − 0.484·15-s + (−0.125 − 0.216i)16-s + (0.608 − 1.05i)17-s + (−0.117 + 0.204i)18-s + (−0.807 − 1.39i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.176155274\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.176155274\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 + 3.46i)T \) |
| 3 | \( 1 + (-4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (23.4 + 40.6i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-43.7 + 75.7i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 754.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-724. + 1.25e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.27e3 + 2.19e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-456. - 790. i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 173.T + 2.05e7T^{2} \) |
| 31 | \( 1 + (2.26e3 - 3.92e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (3.41e3 + 5.91e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.30e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.22e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (6.74e3 + 1.16e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-4.83e3 + 8.38e3i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.51e4 - 2.63e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (366. + 634. i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.31e4 - 4.01e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 3.29e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (5.11e3 - 8.86e3i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (4.92e4 + 8.53e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 8.77e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-3.45e4 - 5.98e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 4.21e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52569008632735801476241808497, −9.104546410430042097618282233835, −8.741863026160127868231019191561, −7.71361956170166360376330762218, −6.64420643492239765187532363590, −5.16724962866889986672325826905, −3.93860864431990098658573006785, −2.76920660568826199405912575345, −1.30819071922384133055059544166, −0.37562797687600049170435455348,
1.56522024529313494043461495039, 3.35204625488756526396846502376, 4.20965514256745302725831824676, 5.76308750418008092983988042824, 6.56056129932081151486680461647, 7.84614529250371283784733395733, 8.414651356523668557045321119465, 9.544882874828582922254853343161, 10.53973989868688430335925150393, 11.04115310106611554450762195435