L(s) = 1 | + (−2 − 3.46i)2-s + (−4.5 + 7.79i)3-s + (−7.99 + 13.8i)4-s + (−37.7 − 65.3i)5-s + 36·6-s + 63.9·8-s + (−40.5 − 70.1i)9-s + (−150. + 261. i)10-s + (74.7 − 129. i)11-s + (−72 − 124. i)12-s − 349.·13-s + 679.·15-s + (−128 − 221. i)16-s + (−574. + 995. i)17-s + (−162 + 280. i)18-s + (−1.39e3 − 2.42e3i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.675 − 1.16i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.477 + 0.826i)10-s + (0.186 − 0.322i)11-s + (−0.144 − 0.249i)12-s − 0.573·13-s + 0.779·15-s + (−0.125 − 0.216i)16-s + (−0.482 + 0.835i)17-s + (−0.117 + 0.204i)18-s + (−0.888 − 1.53i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.2140345495\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2140345495\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 + 3.46i)T \) |
| 3 | \( 1 + (4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (37.7 + 65.3i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-74.7 + 129. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + 349.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (574. - 995. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.39e3 + 2.42e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (906. + 1.57e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 759.T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-4.51e3 + 7.82e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (3.89e3 + 6.75e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 7.64e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.21e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-1.22e4 - 2.13e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (6.79e3 - 1.17e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.31e4 - 2.28e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.76e4 - 3.05e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.71e4 - 4.70e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 7.01e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (2.22e4 - 3.85e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.08e4 + 5.33e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 8.71e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-4.92e4 - 8.53e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 3.23e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.12040554232925858169306432081, −10.27217050949991608645598266359, −9.037355351624622303046758293008, −8.677560078546156721799952053921, −7.50662608048168609205794364016, −6.02060327468357356532514031778, −4.56845285496617647628659917294, −4.17146902968841297812886795462, −2.49557265211285296202468567236, −0.823118429253004335813725830263,
0.092742387068855774462298142356, 1.88723688085889009487778301271, 3.38478337584057942038021712558, 4.80177503316309585991159397724, 6.16221680042365728170294524695, 6.96270304934182491780245541264, 7.60265475787005885523531859905, 8.580969187360785353630292006044, 9.947377369977773761253544671824, 10.65580618653895184169797090806