L(s) = 1 | + (−2 − 3.46i)2-s + (−4.5 + 7.79i)3-s + (−7.99 + 13.8i)4-s + (23.4 + 40.6i)5-s + 36·6-s + 63.9·8-s + (−40.5 − 70.1i)9-s + (93.8 − 162. i)10-s + (43.7 − 75.7i)11-s + (−72 − 124. i)12-s − 754.·13-s − 422.·15-s + (−128 − 221. i)16-s + (−724. + 1.25e3i)17-s + (−162 + 280. i)18-s + (1.27e3 + 2.19e3i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.419 + 0.727i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.296 − 0.514i)10-s + (0.108 − 0.188i)11-s + (−0.144 − 0.249i)12-s − 1.23·13-s − 0.484·15-s + (−0.125 − 0.216i)16-s + (−0.608 + 1.05i)17-s + (−0.117 + 0.204i)18-s + (0.807 + 1.39i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.09673113957\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.09673113957\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 + 3.46i)T \) |
| 3 | \( 1 + (4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-23.4 - 40.6i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-43.7 + 75.7i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + 754.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (724. - 1.25e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-1.27e3 - 2.19e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-456. - 790. i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 173.T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-2.26e3 + 3.92e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (3.41e3 + 5.91e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 1.30e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.22e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-6.74e3 - 1.16e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-4.83e3 + 8.38e3i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.51e4 + 2.63e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-366. - 634. i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.31e4 - 4.01e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 3.29e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-5.11e3 + 8.86e3i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (4.92e4 + 8.53e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 8.77e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (3.45e4 + 5.98e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 4.21e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35742294697540137856217390569, −10.16543587832941026705486569023, −10.09011316311036178499398654197, −8.836845556545799678054839145430, −7.70727137067394487127927241462, −6.54066614978360558478846212700, −5.42042055800965840966283142916, −4.10646509164222393857938209105, −2.98171201421556822787595819215, −1.74815761770332222277528006705,
0.03226152419804914656898436522, 1.18334164418394292871357046483, 2.62665226951817819904782040170, 4.85252359248570732967000159265, 5.21880537331044452674625487182, 6.77333228664798831982057537074, 7.23359244430428747218196624152, 8.554253892381539553403876427170, 9.305623520191681893769455143523, 10.16617148361565866131316119028