L(s) = 1 | + (−2 + 3.46i)2-s + (4.5 + 7.79i)3-s + (−7.99 − 13.8i)4-s + (−23.4 + 40.6i)5-s − 36·6-s + 63.9·8-s + (−40.5 + 70.1i)9-s + (−93.8 − 162. i)10-s + (43.7 + 75.7i)11-s + (72 − 124. i)12-s + 754.·13-s − 422.·15-s + (−128 + 221. i)16-s + (724. + 1.25e3i)17-s + (−162 − 280. i)18-s + (−1.27e3 + 2.19e3i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.419 + 0.727i)5-s − 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.296 − 0.514i)10-s + (0.108 + 0.188i)11-s + (0.144 − 0.249i)12-s + 1.23·13-s − 0.484·15-s + (−0.125 + 0.216i)16-s + (0.608 + 1.05i)17-s + (−0.117 − 0.204i)18-s + (−0.807 + 1.39i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.900+0.435i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(−0.900+0.435i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.900+0.435i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), −0.900+0.435i)
|
Particular Values
L(3) |
≈ |
1.176155274 |
L(21) |
≈ |
1.176155274 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2−3.46i)T |
| 3 | 1+(−4.5−7.79i)T |
| 7 | 1 |
good | 5 | 1+(23.4−40.6i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−43.7−75.7i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−754.T+3.71e5T2 |
| 17 | 1+(−724.−1.25e3i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(1.27e3−2.19e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−456.+790.i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−173.T+2.05e7T2 |
| 31 | 1+(2.26e3+3.92e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(3.41e3−5.91e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−1.30e4T+1.15e8T2 |
| 43 | 1+1.22e4T+1.47e8T2 |
| 47 | 1+(6.74e3−1.16e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−4.83e3−8.38e3i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.51e4+2.63e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(366.−634.i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(2.31e4+4.01e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+3.29e3T+1.80e9T2 |
| 73 | 1+(5.11e3+8.86e3i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(4.92e4−8.53e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−8.77e4T+3.93e9T2 |
| 89 | 1+(−3.45e4+5.98e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+4.21e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04115310106611554450762195435, −10.53973989868688430335925150393, −9.544882874828582922254853343161, −8.414651356523668557045321119465, −7.84614529250371283784733395733, −6.56056129932081151486680461647, −5.76308750418008092983988042824, −4.20965514256745302725831824676, −3.35204625488756526396846502376, −1.56522024529313494043461495039,
0.37562797687600049170435455348, 1.30819071922384133055059544166, 2.76920660568826199405912575345, 3.93860864431990098658573006785, 5.16724962866889986672325826905, 6.64420643492239765187532363590, 7.71361956170166360376330762218, 8.741863026160127868231019191561, 9.104546410430042097618282233835, 10.52569008632735801476241808497