L(s) = 1 | + (−2 + 3.46i)2-s + (4.5 + 7.79i)3-s + (−7.99 − 13.8i)4-s + (−23.4 + 40.6i)5-s − 36·6-s + 63.9·8-s + (−40.5 + 70.1i)9-s + (−93.8 − 162. i)10-s + (43.7 + 75.7i)11-s + (72 − 124. i)12-s + 754.·13-s − 422.·15-s + (−128 + 221. i)16-s + (724. + 1.25e3i)17-s + (−162 − 280. i)18-s + (−1.27e3 + 2.19e3i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.419 + 0.727i)5-s − 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.296 − 0.514i)10-s + (0.108 + 0.188i)11-s + (0.144 − 0.249i)12-s + 1.23·13-s − 0.484·15-s + (−0.125 + 0.216i)16-s + (0.608 + 1.05i)17-s + (−0.117 − 0.204i)18-s + (−0.807 + 1.39i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 + 0.435i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.900 + 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.176155274\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.176155274\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 - 3.46i)T \) |
| 3 | \( 1 + (-4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (23.4 - 40.6i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-43.7 - 75.7i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 754.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-724. - 1.25e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.27e3 - 2.19e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-456. + 790. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 173.T + 2.05e7T^{2} \) |
| 31 | \( 1 + (2.26e3 + 3.92e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (3.41e3 - 5.91e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.30e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.22e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (6.74e3 - 1.16e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-4.83e3 - 8.38e3i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.51e4 + 2.63e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (366. - 634. i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.31e4 + 4.01e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 3.29e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (5.11e3 + 8.86e3i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (4.92e4 - 8.53e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 8.77e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-3.45e4 + 5.98e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 4.21e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04115310106611554450762195435, −10.53973989868688430335925150393, −9.544882874828582922254853343161, −8.414651356523668557045321119465, −7.84614529250371283784733395733, −6.56056129932081151486680461647, −5.76308750418008092983988042824, −4.20965514256745302725831824676, −3.35204625488756526396846502376, −1.56522024529313494043461495039,
0.37562797687600049170435455348, 1.30819071922384133055059544166, 2.76920660568826199405912575345, 3.93860864431990098658573006785, 5.16724962866889986672325826905, 6.64420643492239765187532363590, 7.71361956170166360376330762218, 8.741863026160127868231019191561, 9.104546410430042097618282233835, 10.52569008632735801476241808497