L(s) = 1 | + (2 − 3.46i)2-s + (4.5 + 7.79i)3-s + (−7.99 − 13.8i)4-s + (2.25 − 3.89i)5-s + 36·6-s − 63.9·8-s + (−40.5 + 70.1i)9-s + (−9.00 − 15.5i)10-s + (58.0 + 100. i)11-s + (72 − 124. i)12-s + 85.4·13-s + 40.5·15-s + (−128 + 221. i)16-s + (16.6 + 28.8i)17-s + (162 + 280. i)18-s + (317. − 550. i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.0402 − 0.0697i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.0284 − 0.0493i)10-s + (0.144 + 0.250i)11-s + (0.144 − 0.249i)12-s + 0.140·13-s + 0.0465·15-s + (−0.125 + 0.216i)16-s + (0.0139 + 0.0241i)17-s + (0.117 + 0.204i)18-s + (0.201 − 0.349i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(0.900−0.435i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(0.900−0.435i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
0.900−0.435i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), 0.900−0.435i)
|
Particular Values
L(3) |
≈ |
2.484165626 |
L(21) |
≈ |
2.484165626 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2+3.46i)T |
| 3 | 1+(−4.5−7.79i)T |
| 7 | 1 |
good | 5 | 1+(−2.25+3.89i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−58.0−100.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−85.4T+3.71e5T2 |
| 17 | 1+(−16.6−28.8i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−317.+550.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(1.36e3−2.36e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−5.86e3T+2.05e7T2 |
| 31 | 1+(−139.−241.i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(1.51e3−2.63e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+819.T+1.15e8T2 |
| 43 | 1−1.11e4T+1.47e8T2 |
| 47 | 1+(3.70e3−6.41e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−6.84e3−1.18e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−1.11e4−1.93e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(6.34e3−1.09e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−2.61e4−4.52e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−6.02e4T+1.80e9T2 |
| 73 | 1+(−3.84e4−6.66e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−1.67e4+2.90e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+6.05e4T+3.93e9T2 |
| 89 | 1+(−4.60e4+7.98e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+1.52e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02229594255246187111543619416, −10.08371368363493660137410922651, −9.328099407550582134273686203077, −8.373228169046046437022322483191, −7.08979245573586115360182728680, −5.74366767397527999003523320786, −4.72409667515195608625694652029, −3.68956975617950421620194180398, −2.58413574235771668159232023638, −1.16551238210768898715563918903,
0.64467589223355718018740164248, 2.34006760858001028025383182342, 3.61278462043272959497986302497, 4.84891800199306761638731825166, 6.13166889015983905626727900124, 6.80950400419099369812627654849, 7.998391760376409433992042955477, 8.610730360258950093824357658209, 9.798378957420809606178297380592, 10.92829727864364096354099214595