Properties

Label 2-294-147.101-c1-0-5
Degree $2$
Conductor $294$
Sign $-0.135 - 0.990i$
Analytic cond. $2.34760$
Root an. cond. $1.53218$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.930 + 0.365i)2-s + (−0.332 + 1.69i)3-s + (0.733 + 0.680i)4-s + (2.77 + 1.89i)5-s + (−0.930 + 1.46i)6-s + (−2.14 + 1.54i)7-s + (0.433 + 0.900i)8-s + (−2.77 − 1.13i)9-s + (1.89 + 2.77i)10-s + (−0.905 − 6.00i)11-s + (−1.40 + 1.01i)12-s + (1.32 − 1.05i)13-s + (−2.56 + 0.654i)14-s + (−4.13 + 4.08i)15-s + (0.0747 + 0.997i)16-s + (0.409 + 0.126i)17-s + ⋯
L(s)  = 1  + (0.658 + 0.258i)2-s + (−0.192 + 0.981i)3-s + (0.366 + 0.340i)4-s + (1.24 + 0.845i)5-s + (−0.380 + 0.596i)6-s + (−0.811 + 0.584i)7-s + (0.153 + 0.318i)8-s + (−0.926 − 0.377i)9-s + (0.597 + 0.876i)10-s + (−0.272 − 1.81i)11-s + (−0.404 + 0.294i)12-s + (0.368 − 0.293i)13-s + (−0.685 + 0.174i)14-s + (−1.06 + 1.05i)15-s + (0.0186 + 0.249i)16-s + (0.0993 + 0.0306i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.135 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.135 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(294\)    =    \(2 \cdot 3 \cdot 7^{2}\)
Sign: $-0.135 - 0.990i$
Analytic conductor: \(2.34760\)
Root analytic conductor: \(1.53218\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{294} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 294,\ (\ :1/2),\ -0.135 - 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.24891 + 1.43109i\)
\(L(\frac12)\) \(\approx\) \(1.24891 + 1.43109i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.930 - 0.365i)T \)
3 \( 1 + (0.332 - 1.69i)T \)
7 \( 1 + (2.14 - 1.54i)T \)
good5 \( 1 + (-2.77 - 1.89i)T + (1.82 + 4.65i)T^{2} \)
11 \( 1 + (0.905 + 6.00i)T + (-10.5 + 3.24i)T^{2} \)
13 \( 1 + (-1.32 + 1.05i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (-0.409 - 0.126i)T + (14.0 + 9.57i)T^{2} \)
19 \( 1 + (-0.985 + 0.568i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.51 - 4.91i)T + (-19.0 + 12.9i)T^{2} \)
29 \( 1 + (-7.31 + 1.66i)T + (26.1 - 12.5i)T^{2} \)
31 \( 1 + (1.31 + 0.757i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (7.65 - 7.09i)T + (2.76 - 36.8i)T^{2} \)
41 \( 1 + (-9.57 + 4.61i)T + (25.5 - 32.0i)T^{2} \)
43 \( 1 + (6.51 + 3.13i)T + (26.8 + 33.6i)T^{2} \)
47 \( 1 + (1.97 - 5.02i)T + (-34.4 - 31.9i)T^{2} \)
53 \( 1 + (-0.516 + 0.556i)T + (-3.96 - 52.8i)T^{2} \)
59 \( 1 + (-7.56 + 5.15i)T + (21.5 - 54.9i)T^{2} \)
61 \( 1 + (3.47 + 3.74i)T + (-4.55 + 60.8i)T^{2} \)
67 \( 1 + (-3.86 + 6.69i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (13.2 + 3.03i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (1.42 - 0.559i)T + (53.5 - 49.6i)T^{2} \)
79 \( 1 + (2.37 + 4.12i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (2.83 - 3.54i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (3.81 + 0.574i)T + (85.0 + 26.2i)T^{2} \)
97 \( 1 + 4.18iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.91439295857192743815842142056, −10.97823545659969838562459730624, −10.28231000081397317689493543271, −9.346086917395170069037974154458, −8.389836220924626993326374264572, −6.58056728979954717291288272693, −5.90834784907915250163803641240, −5.31985679954739630361702994059, −3.42232220396321996457580043112, −2.85513908887594953895694794263, 1.39526489147822424483950284294, 2.56995045283347349992887609149, 4.48806962449711463351906316971, 5.50663563497201220543405839464, 6.54308594545468339038923433994, 7.23497854650988105532331166593, 8.761822169126983624216772052003, 9.832891726823990022450447778830, 10.51395534303031938679746022413, 11.98299472508384751256655067491

Graph of the $Z$-function along the critical line