Properties

Label 2-2900-1.1-c1-0-8
Degree $2$
Conductor $2900$
Sign $1$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.35·3-s + 0.648·7-s − 1.17·9-s + 3.35·11-s − 4.17·13-s − 4.82·17-s + 6.82·19-s − 0.876·21-s − 5.52·23-s + 5.64·27-s − 29-s − 2.82·31-s − 4.53·33-s + 10.2·37-s + 5.64·39-s + 8.17·41-s + 5.69·43-s + 2.64·47-s − 6.58·49-s + 6.51·51-s + 2.87·53-s − 9.22·57-s − 13.2·59-s − 1.12·61-s − 0.759·63-s − 1.52·67-s + 7.46·69-s + ⋯
L(s)  = 1  − 0.780·3-s + 0.244·7-s − 0.390·9-s + 1.01·11-s − 1.15·13-s − 1.16·17-s + 1.56·19-s − 0.191·21-s − 1.15·23-s + 1.08·27-s − 0.185·29-s − 0.506·31-s − 0.788·33-s + 1.68·37-s + 0.903·39-s + 1.27·41-s + 0.868·43-s + 0.386·47-s − 0.940·49-s + 0.912·51-s + 0.395·53-s − 1.22·57-s − 1.72·59-s − 0.143·61-s − 0.0957·63-s − 0.186·67-s + 0.899·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.143378068\)
\(L(\frac12)\) \(\approx\) \(1.143378068\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 + T \)
good3 \( 1 + 1.35T + 3T^{2} \)
7 \( 1 - 0.648T + 7T^{2} \)
11 \( 1 - 3.35T + 11T^{2} \)
13 \( 1 + 4.17T + 13T^{2} \)
17 \( 1 + 4.82T + 17T^{2} \)
19 \( 1 - 6.82T + 19T^{2} \)
23 \( 1 + 5.52T + 23T^{2} \)
31 \( 1 + 2.82T + 31T^{2} \)
37 \( 1 - 10.2T + 37T^{2} \)
41 \( 1 - 8.17T + 41T^{2} \)
43 \( 1 - 5.69T + 43T^{2} \)
47 \( 1 - 2.64T + 47T^{2} \)
53 \( 1 - 2.87T + 53T^{2} \)
59 \( 1 + 13.2T + 59T^{2} \)
61 \( 1 + 1.12T + 61T^{2} \)
67 \( 1 + 1.52T + 67T^{2} \)
71 \( 1 + 8.87T + 71T^{2} \)
73 \( 1 + 9.69T + 73T^{2} \)
79 \( 1 - 8.99T + 79T^{2} \)
83 \( 1 + 1.94T + 83T^{2} \)
89 \( 1 - 17.0T + 89T^{2} \)
97 \( 1 - 13.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.015977192396361319872840442850, −7.78642298182288257474753851501, −7.33359183685454525661575472491, −6.25596899791561431184802044322, −5.86638111013525184149165881527, −4.84183093577182791775690800991, −4.27851545059666153150086605784, −3.06718601321511281743720444891, −2.02726486379836427945556783237, −0.67424163363638484228142578845, 0.67424163363638484228142578845, 2.02726486379836427945556783237, 3.06718601321511281743720444891, 4.27851545059666153150086605784, 4.84183093577182791775690800991, 5.86638111013525184149165881527, 6.25596899791561431184802044322, 7.33359183685454525661575472491, 7.78642298182288257474753851501, 9.015977192396361319872840442850

Graph of the $Z$-function along the critical line