Properties

Label 2-29-29.16-c5-0-6
Degree $2$
Conductor $29$
Sign $0.0570 - 0.998i$
Analytic cond. $4.65113$
Root an. cond. $2.15664$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (8.40 + 4.04i)2-s + (−6.82 + 8.55i)3-s + (34.3 + 43.0i)4-s + (14.9 + 7.18i)5-s + (−92.0 + 44.3i)6-s + (−4.02 + 5.04i)7-s + (47.8 + 209. i)8-s + (27.4 + 120. i)9-s + (96.3 + 120. i)10-s + (77.6 − 340. i)11-s − 602.·12-s + (156. − 684. i)13-s + (−54.2 + 26.1i)14-s + (−163. + 78.6i)15-s + (−54.5 + 239. i)16-s + 833.·17-s + ⋯
L(s)  = 1  + (1.48 + 0.715i)2-s + (−0.437 + 0.549i)3-s + (1.07 + 1.34i)4-s + (0.266 + 0.128i)5-s + (−1.04 + 0.502i)6-s + (−0.0310 + 0.0389i)7-s + (0.264 + 1.15i)8-s + (0.112 + 0.494i)9-s + (0.304 + 0.382i)10-s + (0.193 − 0.847i)11-s − 1.20·12-s + (0.256 − 1.12i)13-s + (−0.0739 + 0.0356i)14-s + (−0.187 + 0.0902i)15-s + (−0.0532 + 0.233i)16-s + 0.699·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0570 - 0.998i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.0570 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(29\)
Sign: $0.0570 - 0.998i$
Analytic conductor: \(4.65113\)
Root analytic conductor: \(2.15664\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{29} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 29,\ (\ :5/2),\ 0.0570 - 0.998i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.10303 + 1.98625i\)
\(L(\frac12)\) \(\approx\) \(2.10303 + 1.98625i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 + (2.56e3 - 3.73e3i)T \)
good2 \( 1 + (-8.40 - 4.04i)T + (19.9 + 25.0i)T^{2} \)
3 \( 1 + (6.82 - 8.55i)T + (-54.0 - 236. i)T^{2} \)
5 \( 1 + (-14.9 - 7.18i)T + (1.94e3 + 2.44e3i)T^{2} \)
7 \( 1 + (4.02 - 5.04i)T + (-3.73e3 - 1.63e4i)T^{2} \)
11 \( 1 + (-77.6 + 340. i)T + (-1.45e5 - 6.98e4i)T^{2} \)
13 \( 1 + (-156. + 684. i)T + (-3.34e5 - 1.61e5i)T^{2} \)
17 \( 1 - 833.T + 1.41e6T^{2} \)
19 \( 1 + (-449. - 563. i)T + (-5.50e5 + 2.41e6i)T^{2} \)
23 \( 1 + (290. - 139. i)T + (4.01e6 - 5.03e6i)T^{2} \)
31 \( 1 + (3.10e3 + 1.49e3i)T + (1.78e7 + 2.23e7i)T^{2} \)
37 \( 1 + (-2.51e3 - 1.10e4i)T + (-6.24e7 + 3.00e7i)T^{2} \)
41 \( 1 + 704.T + 1.15e8T^{2} \)
43 \( 1 + (2.00e4 - 9.66e3i)T + (9.16e7 - 1.14e8i)T^{2} \)
47 \( 1 + (-4.11e3 + 1.80e4i)T + (-2.06e8 - 9.95e7i)T^{2} \)
53 \( 1 + (2.71e3 + 1.30e3i)T + (2.60e8 + 3.26e8i)T^{2} \)
59 \( 1 - 291.T + 7.14e8T^{2} \)
61 \( 1 + (-7.30e3 + 9.16e3i)T + (-1.87e8 - 8.23e8i)T^{2} \)
67 \( 1 + (4.56e3 + 1.99e4i)T + (-1.21e9 + 5.85e8i)T^{2} \)
71 \( 1 + (9.88e3 - 4.33e4i)T + (-1.62e9 - 7.82e8i)T^{2} \)
73 \( 1 + (-7.31e4 + 3.52e4i)T + (1.29e9 - 1.62e9i)T^{2} \)
79 \( 1 + (1.79e4 + 7.87e4i)T + (-2.77e9 + 1.33e9i)T^{2} \)
83 \( 1 + (3.06e4 + 3.84e4i)T + (-8.76e8 + 3.84e9i)T^{2} \)
89 \( 1 + (7.22e4 + 3.47e4i)T + (3.48e9 + 4.36e9i)T^{2} \)
97 \( 1 + (-9.86e4 - 1.23e5i)T + (-1.91e9 + 8.37e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.15003606323599626134997626902, −15.11523972956412812482063517488, −13.95751784072149085064818649785, −13.00971063068229068692557721283, −11.59974843601870333107715651453, −10.19446969216532044625364258261, −7.88134840231612164946204001244, −6.07977120413346859691655206606, −5.13753254554390458370772179847, −3.44055413548265904956861703746, 1.74988654196608591380697653207, 3.93571988612543596873386712245, 5.58614767155833683746313245344, 6.93674785325384775876633505899, 9.590139821719991899301703151301, 11.33998313036204947735357119468, 12.17162638294385645617961850641, 13.10991444237411047855446715660, 14.20773131155467255142164201911, 15.31512249481081924216548122495

Graph of the $Z$-function along the critical line