Properties

Label 2-28e2-7.2-c1-0-16
Degree $2$
Conductor $784$
Sign $-0.991 - 0.126i$
Analytic cond. $6.26027$
Root an. cond. $2.50205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − 1.73i)3-s + (−0.499 + 0.866i)9-s − 4·13-s + (−3 − 5.19i)17-s + (1 − 1.73i)19-s + (2.5 + 4.33i)25-s − 4.00·27-s − 6·29-s + (−2 − 3.46i)31-s + (−1 + 1.73i)37-s + (4 + 6.92i)39-s + 6·41-s − 8·43-s + (−6 + 10.3i)47-s + (−6 + 10.3i)51-s + ⋯
L(s)  = 1  + (−0.577 − 0.999i)3-s + (−0.166 + 0.288i)9-s − 1.10·13-s + (−0.727 − 1.26i)17-s + (0.229 − 0.397i)19-s + (0.5 + 0.866i)25-s − 0.769·27-s − 1.11·29-s + (−0.359 − 0.622i)31-s + (−0.164 + 0.284i)37-s + (0.640 + 1.10i)39-s + 0.937·41-s − 1.21·43-s + (−0.875 + 1.51i)47-s + (−0.840 + 1.45i)51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $-0.991 - 0.126i$
Analytic conductor: \(6.26027\)
Root analytic conductor: \(2.50205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{784} (177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :1/2),\ -0.991 - 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0317290 + 0.499982i\)
\(L(\frac12)\) \(\approx\) \(0.0317290 + 0.499982i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + (1 + 1.73i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
17 \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + (6 - 10.3i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (3 + 5.19i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (2 + 3.46i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.659057556386878572095815492825, −9.192650234681562265281981519467, −7.77589947345195472371491411327, −7.22149221601780025571692144702, −6.51790002346906792265498944020, −5.44902148242624285052927347525, −4.60141690972574425880329641702, −3.03705038180725135820462610431, −1.79666454082796095718830451387, −0.25674874227866546480281024802, 2.03644058740327689306834047086, 3.57393654806864435044477955707, 4.50458714447059805024772520608, 5.25573868168774993405313395900, 6.20316109683639666590248107495, 7.25508198704575697242647246701, 8.268691822816116356781575522813, 9.244186465240802806910759944490, 10.04889135363310651345323215390, 10.61662441845157271609312247549

Graph of the $Z$-function along the critical line