L(s) = 1 | + (1 − 1.73i)3-s + (3 − 1.73i)5-s + (−0.499 − 0.866i)9-s + (−3 − 1.73i)11-s − 3.46i·13-s − 6.92i·15-s + (1 + 1.73i)19-s + (−3 + 1.73i)23-s + (3.5 − 6.06i)25-s + 4.00·27-s + 6·29-s + (−4 + 6.92i)31-s + (−6 + 3.46i)33-s + (1 + 1.73i)37-s + (−5.99 − 3.46i)39-s + ⋯ |
L(s) = 1 | + (0.577 − 0.999i)3-s + (1.34 − 0.774i)5-s + (−0.166 − 0.288i)9-s + (−0.904 − 0.522i)11-s − 0.960i·13-s − 1.78i·15-s + (0.229 + 0.397i)19-s + (−0.625 + 0.361i)23-s + (0.700 − 1.21i)25-s + 0.769·27-s + 1.11·29-s + (−0.718 + 1.24i)31-s + (−1.04 + 0.603i)33-s + (0.164 + 0.284i)37-s + (−0.960 − 0.554i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.52468 - 1.62450i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.52468 - 1.62450i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1 + 1.73i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-3 + 1.73i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (3 + 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3 - 1.73i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (4 - 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6.92iT - 41T^{2} \) |
| 43 | \( 1 + 10.3iT - 43T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3 - 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3 - 1.73i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3 + 1.73i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.46iT - 71T^{2} \) |
| 73 | \( 1 + (-6 - 3.46i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-3 + 1.73i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-6 + 3.46i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11040732871490540876658443469, −9.059069206134996321125605381393, −8.295879663483255015463289808722, −7.70373802667479973760245446603, −6.54334168776319052839973059571, −5.63886776221557643105285435924, −4.97173540299177572649287045373, −3.15159152585006383867867430106, −2.16294737197199234163774045176, −1.11927073919964896646083367438,
2.08224269043742124058466608210, 2.86608744029093119602358986889, 4.12101457259943252118732261643, 5.05804684329085506654964567027, 6.13461265635285938543077954205, 6.93615822123185691673378864227, 8.072087805167689252802864249116, 9.275721755863283411188510091002, 9.590002472144097237106077941810, 10.35790841082252018411878541089