Properties

Label 2-28e2-28.19-c1-0-5
Degree $2$
Conductor $784$
Sign $-0.0633 - 0.997i$
Analytic cond. $6.26027$
Root an. cond. $2.50205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + 1.73i)3-s + (3 + 1.73i)5-s + (−0.499 + 0.866i)9-s + (−3 + 1.73i)11-s + 3.46i·13-s + 6.92i·15-s + (1 − 1.73i)19-s + (−3 − 1.73i)23-s + (3.5 + 6.06i)25-s + 4.00·27-s + 6·29-s + (−4 − 6.92i)31-s + (−6 − 3.46i)33-s + (1 − 1.73i)37-s + (−5.99 + 3.46i)39-s + ⋯
L(s)  = 1  + (0.577 + 0.999i)3-s + (1.34 + 0.774i)5-s + (−0.166 + 0.288i)9-s + (−0.904 + 0.522i)11-s + 0.960i·13-s + 1.78i·15-s + (0.229 − 0.397i)19-s + (−0.625 − 0.361i)23-s + (0.700 + 1.21i)25-s + 0.769·27-s + 1.11·29-s + (−0.718 − 1.24i)31-s + (−1.04 − 0.603i)33-s + (0.164 − 0.284i)37-s + (−0.960 + 0.554i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $-0.0633 - 0.997i$
Analytic conductor: \(6.26027\)
Root analytic conductor: \(2.50205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{784} (607, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :1/2),\ -0.0633 - 0.997i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.52468 + 1.62450i\)
\(L(\frac12)\) \(\approx\) \(1.52468 + 1.62450i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + (-1 - 1.73i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (-3 - 1.73i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + (3 - 1.73i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 - 3.46iT - 13T^{2} \)
17 \( 1 + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (3 + 1.73i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + (4 + 6.92i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-1 + 1.73i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 6.92iT - 41T^{2} \)
43 \( 1 - 10.3iT - 43T^{2} \)
47 \( 1 + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (3 + 5.19i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-3 - 5.19i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3 + 1.73i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (3 - 1.73i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + 3.46iT - 71T^{2} \)
73 \( 1 + (-6 + 3.46i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-3 - 1.73i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + (-6 - 3.46i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 - 13.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35790841082252018411878541089, −9.590002472144097237106077941810, −9.275721755863283411188510091002, −8.072087805167689252802864249116, −6.93615822123185691673378864227, −6.13461265635285938543077954205, −5.05804684329085506654964567027, −4.12101457259943252118732261643, −2.86608744029093119602358986889, −2.08224269043742124058466608210, 1.11927073919964896646083367438, 2.16294737197199234163774045176, 3.15159152585006383867867430106, 4.97173540299177572649287045373, 5.63886776221557643105285435924, 6.54334168776319052839973059571, 7.70373802667479973760245446603, 8.295879663483255015463289808722, 9.059069206134996321125605381393, 10.11040732871490540876658443469

Graph of the $Z$-function along the critical line