L(s) = 1 | + (1 + 1.73i)3-s + (3 + 1.73i)5-s + (−0.499 + 0.866i)9-s + (−3 + 1.73i)11-s + 3.46i·13-s + 6.92i·15-s + (1 − 1.73i)19-s + (−3 − 1.73i)23-s + (3.5 + 6.06i)25-s + 4.00·27-s + 6·29-s + (−4 − 6.92i)31-s + (−6 − 3.46i)33-s + (1 − 1.73i)37-s + (−5.99 + 3.46i)39-s + ⋯ |
L(s) = 1 | + (0.577 + 0.999i)3-s + (1.34 + 0.774i)5-s + (−0.166 + 0.288i)9-s + (−0.904 + 0.522i)11-s + 0.960i·13-s + 1.78i·15-s + (0.229 − 0.397i)19-s + (−0.625 − 0.361i)23-s + (0.700 + 1.21i)25-s + 0.769·27-s + 1.11·29-s + (−0.718 − 1.24i)31-s + (−1.04 − 0.603i)33-s + (0.164 − 0.284i)37-s + (−0.960 + 0.554i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.52468 + 1.62450i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.52468 + 1.62450i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1 - 1.73i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-3 - 1.73i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3 - 1.73i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.46iT - 13T^{2} \) |
| 17 | \( 1 + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3 + 1.73i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (4 + 6.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 + 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.92iT - 41T^{2} \) |
| 43 | \( 1 - 10.3iT - 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3 + 5.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3 - 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3 + 1.73i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3 - 1.73i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.46iT - 71T^{2} \) |
| 73 | \( 1 + (-6 + 3.46i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3 - 1.73i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-6 - 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35790841082252018411878541089, −9.590002472144097237106077941810, −9.275721755863283411188510091002, −8.072087805167689252802864249116, −6.93615822123185691673378864227, −6.13461265635285938543077954205, −5.05804684329085506654964567027, −4.12101457259943252118732261643, −2.86608744029093119602358986889, −2.08224269043742124058466608210,
1.11927073919964896646083367438, 2.16294737197199234163774045176, 3.15159152585006383867867430106, 4.97173540299177572649287045373, 5.63886776221557643105285435924, 6.54334168776319052839973059571, 7.70373802667479973760245446603, 8.295879663483255015463289808722, 9.059069206134996321125605381393, 10.11040732871490540876658443469