L(s) = 1 | + (−1 − 1.73i)3-s + (−3 − 1.73i)5-s + (−0.499 + 0.866i)9-s + (−3 + 1.73i)11-s − 3.46i·13-s + 6.92i·15-s + (−1 + 1.73i)19-s + (−3 − 1.73i)23-s + (3.5 + 6.06i)25-s − 4.00·27-s + 6·29-s + (4 + 6.92i)31-s + (6 + 3.46i)33-s + (1 − 1.73i)37-s + (−5.99 + 3.46i)39-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.999i)3-s + (−1.34 − 0.774i)5-s + (−0.166 + 0.288i)9-s + (−0.904 + 0.522i)11-s − 0.960i·13-s + 1.78i·15-s + (−0.229 + 0.397i)19-s + (−0.625 − 0.361i)23-s + (0.700 + 1.21i)25-s − 0.769·27-s + 1.11·29-s + (0.718 + 1.24i)31-s + (1.04 + 0.603i)33-s + (0.164 − 0.284i)37-s + (−0.960 + 0.554i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (1 + 1.73i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (3 + 1.73i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3 - 1.73i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.46iT - 13T^{2} \) |
| 17 | \( 1 + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3 + 1.73i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (-4 - 6.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 + 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6.92iT - 41T^{2} \) |
| 43 | \( 1 - 10.3iT - 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3 + 5.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3 - 1.73i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3 - 1.73i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.46iT - 71T^{2} \) |
| 73 | \( 1 + (6 - 3.46i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3 - 1.73i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (6 + 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.755912146266170157356787980229, −8.197497193922523645982764813321, −8.135106824139695214037094799330, −7.16918649032956188654591363765, −6.23313657320194833803067148870, −5.12899649451736412572202856689, −4.30963641674011181378805949560, −2.94662097412163382535566968564, −1.22966827996759562250840495380, 0,
2.62881084871766801544384656958, 3.85077914416148281400819986736, 4.41482417676933497181119838178, 5.49229157437087386847296677144, 6.58641186022314235151630850492, 7.53938533565767705793031433471, 8.277330397860609314401042911877, 9.363460232001938192223691988724, 10.45064092404618624576041391837