Properties

Label 2-28e2-1.1-c5-0-51
Degree $2$
Conductor $784$
Sign $-1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 29.8·3-s + 21·5-s + 645.·9-s − 331.·11-s − 66.8·13-s − 625.·15-s − 240.·17-s + 441.·19-s + 1.07e3·23-s − 2.68e3·25-s − 1.19e4·27-s + 1.79e3·29-s − 5.68e3·31-s + 9.89e3·33-s + 1.12e4·37-s + 1.99e3·39-s − 1.20e4·41-s + 9.92e3·43-s + 1.35e4·45-s − 1.68e4·47-s + 7.16e3·51-s + 5.29e3·53-s − 6.96e3·55-s − 1.31e4·57-s + 4.13e4·59-s + 2.15e4·61-s − 1.40e3·65-s + ⋯
L(s)  = 1  − 1.91·3-s + 0.375·5-s + 2.65·9-s − 0.826·11-s − 0.109·13-s − 0.718·15-s − 0.201·17-s + 0.280·19-s + 0.422·23-s − 0.858·25-s − 3.16·27-s + 0.395·29-s − 1.06·31-s + 1.58·33-s + 1.34·37-s + 0.209·39-s − 1.12·41-s + 0.818·43-s + 0.997·45-s − 1.11·47-s + 0.385·51-s + 0.259·53-s − 0.310·55-s − 0.537·57-s + 1.54·59-s + 0.740·61-s − 0.0411·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 29.8T + 243T^{2} \)
5 \( 1 - 21T + 3.12e3T^{2} \)
11 \( 1 + 331.T + 1.61e5T^{2} \)
13 \( 1 + 66.8T + 3.71e5T^{2} \)
17 \( 1 + 240.T + 1.41e6T^{2} \)
19 \( 1 - 441.T + 2.47e6T^{2} \)
23 \( 1 - 1.07e3T + 6.43e6T^{2} \)
29 \( 1 - 1.79e3T + 2.05e7T^{2} \)
31 \( 1 + 5.68e3T + 2.86e7T^{2} \)
37 \( 1 - 1.12e4T + 6.93e7T^{2} \)
41 \( 1 + 1.20e4T + 1.15e8T^{2} \)
43 \( 1 - 9.92e3T + 1.47e8T^{2} \)
47 \( 1 + 1.68e4T + 2.29e8T^{2} \)
53 \( 1 - 5.29e3T + 4.18e8T^{2} \)
59 \( 1 - 4.13e4T + 7.14e8T^{2} \)
61 \( 1 - 2.15e4T + 8.44e8T^{2} \)
67 \( 1 - 2.66e4T + 1.35e9T^{2} \)
71 \( 1 - 5.80e4T + 1.80e9T^{2} \)
73 \( 1 - 3.99e4T + 2.07e9T^{2} \)
79 \( 1 - 4.39e4T + 3.07e9T^{2} \)
83 \( 1 - 2.24e4T + 3.93e9T^{2} \)
89 \( 1 + 2.40e4T + 5.58e9T^{2} \)
97 \( 1 + 7.18e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.540253025812326591812398454730, −8.051636822501910844902846851420, −7.09957973962597450652574345459, −6.35602940744431153124235507126, −5.46806516955290411671911100156, −5.01131185307155209363303680259, −3.87611545938224984915804478027, −2.18649229236883055944713278522, −0.966165144396267553159472852254, 0, 0.966165144396267553159472852254, 2.18649229236883055944713278522, 3.87611545938224984915804478027, 5.01131185307155209363303680259, 5.46806516955290411671911100156, 6.35602940744431153124235507126, 7.09957973962597450652574345459, 8.051636822501910844902846851420, 9.540253025812326591812398454730

Graph of the $Z$-function along the critical line