Properties

Label 2-28e2-1.1-c5-0-35
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24.8·3-s + 84.4·5-s + 375.·9-s + 434.·11-s − 848.·13-s − 2.10e3·15-s + 301.·17-s + 2.90e3·19-s + 1.70e3·23-s + 4.01e3·25-s − 3.28e3·27-s + 3.84e3·29-s − 969.·31-s − 1.07e4·33-s + 2.50e3·37-s + 2.11e4·39-s + 1.32e4·41-s − 7.78e3·43-s + 3.16e4·45-s − 5.48e3·47-s − 7.49e3·51-s + 2.28e4·53-s + 3.66e4·55-s − 7.23e4·57-s − 1.11e4·59-s − 2.22e4·61-s − 7.17e4·65-s + ⋯
L(s)  = 1  − 1.59·3-s + 1.51·5-s + 1.54·9-s + 1.08·11-s − 1.39·13-s − 2.41·15-s + 0.252·17-s + 1.84·19-s + 0.673·23-s + 1.28·25-s − 0.867·27-s + 0.848·29-s − 0.181·31-s − 1.72·33-s + 0.301·37-s + 2.22·39-s + 1.23·41-s − 0.641·43-s + 2.33·45-s − 0.362·47-s − 0.403·51-s + 1.11·53-s + 1.63·55-s − 2.94·57-s − 0.415·59-s − 0.764·61-s − 2.10·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.967283621\)
\(L(\frac12)\) \(\approx\) \(1.967283621\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 24.8T + 243T^{2} \)
5 \( 1 - 84.4T + 3.12e3T^{2} \)
11 \( 1 - 434.T + 1.61e5T^{2} \)
13 \( 1 + 848.T + 3.71e5T^{2} \)
17 \( 1 - 301.T + 1.41e6T^{2} \)
19 \( 1 - 2.90e3T + 2.47e6T^{2} \)
23 \( 1 - 1.70e3T + 6.43e6T^{2} \)
29 \( 1 - 3.84e3T + 2.05e7T^{2} \)
31 \( 1 + 969.T + 2.86e7T^{2} \)
37 \( 1 - 2.50e3T + 6.93e7T^{2} \)
41 \( 1 - 1.32e4T + 1.15e8T^{2} \)
43 \( 1 + 7.78e3T + 1.47e8T^{2} \)
47 \( 1 + 5.48e3T + 2.29e8T^{2} \)
53 \( 1 - 2.28e4T + 4.18e8T^{2} \)
59 \( 1 + 1.11e4T + 7.14e8T^{2} \)
61 \( 1 + 2.22e4T + 8.44e8T^{2} \)
67 \( 1 - 7.21e3T + 1.35e9T^{2} \)
71 \( 1 + 4.61e4T + 1.80e9T^{2} \)
73 \( 1 + 6.76e4T + 2.07e9T^{2} \)
79 \( 1 - 6.99e4T + 3.07e9T^{2} \)
83 \( 1 + 3.91e3T + 3.93e9T^{2} \)
89 \( 1 + 5.29e4T + 5.58e9T^{2} \)
97 \( 1 - 64.5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.754936546440915515575054265748, −9.110139337810693888538833035856, −7.41245029810997797849419587600, −6.72215346102265482074306231923, −5.89113950401273712079225678304, −5.30927931000980845870308163202, −4.56003355390320072460427191071, −2.88098257006900091022679634414, −1.53598292274980841790948888096, −0.76110422863636012411298765579, 0.76110422863636012411298765579, 1.53598292274980841790948888096, 2.88098257006900091022679634414, 4.56003355390320072460427191071, 5.30927931000980845870308163202, 5.89113950401273712079225678304, 6.72215346102265482074306231923, 7.41245029810997797849419587600, 9.110139337810693888538833035856, 9.754936546440915515575054265748

Graph of the $Z$-function along the critical line