Properties

Label 2-28e2-1.1-c5-0-32
Degree $2$
Conductor $784$
Sign $1$
Analytic cond. $125.740$
Root an. cond. $11.2134$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14.5·3-s + 44.8·5-s − 31.8·9-s + 634.·11-s + 20.5·13-s − 651.·15-s + 1.05e3·17-s + 65.1·19-s + 4.05e3·23-s − 1.11e3·25-s + 3.99e3·27-s − 6.58e3·29-s + 1.08e3·31-s − 9.22e3·33-s + 685.·37-s − 299.·39-s + 1.36e4·41-s + 1.60e4·43-s − 1.42e3·45-s − 1.36e4·47-s − 1.52e4·51-s − 1.60e3·53-s + 2.84e4·55-s − 947.·57-s − 7.52e3·59-s − 2.08e4·61-s + 922.·65-s + ⋯
L(s)  = 1  − 0.932·3-s + 0.801·5-s − 0.131·9-s + 1.58·11-s + 0.0337·13-s − 0.747·15-s + 0.881·17-s + 0.0414·19-s + 1.59·23-s − 0.357·25-s + 1.05·27-s − 1.45·29-s + 0.203·31-s − 1.47·33-s + 0.0822·37-s − 0.0314·39-s + 1.26·41-s + 1.32·43-s − 0.105·45-s − 0.898·47-s − 0.821·51-s − 0.0786·53-s + 1.26·55-s − 0.0386·57-s − 0.281·59-s − 0.718·61-s + 0.0270·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(784\)    =    \(2^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(125.740\)
Root analytic conductor: \(11.2134\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 784,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.114337169\)
\(L(\frac12)\) \(\approx\) \(2.114337169\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 14.5T + 243T^{2} \)
5 \( 1 - 44.8T + 3.12e3T^{2} \)
11 \( 1 - 634.T + 1.61e5T^{2} \)
13 \( 1 - 20.5T + 3.71e5T^{2} \)
17 \( 1 - 1.05e3T + 1.41e6T^{2} \)
19 \( 1 - 65.1T + 2.47e6T^{2} \)
23 \( 1 - 4.05e3T + 6.43e6T^{2} \)
29 \( 1 + 6.58e3T + 2.05e7T^{2} \)
31 \( 1 - 1.08e3T + 2.86e7T^{2} \)
37 \( 1 - 685.T + 6.93e7T^{2} \)
41 \( 1 - 1.36e4T + 1.15e8T^{2} \)
43 \( 1 - 1.60e4T + 1.47e8T^{2} \)
47 \( 1 + 1.36e4T + 2.29e8T^{2} \)
53 \( 1 + 1.60e3T + 4.18e8T^{2} \)
59 \( 1 + 7.52e3T + 7.14e8T^{2} \)
61 \( 1 + 2.08e4T + 8.44e8T^{2} \)
67 \( 1 + 1.87e3T + 1.35e9T^{2} \)
71 \( 1 - 2.76e3T + 1.80e9T^{2} \)
73 \( 1 + 4.15e4T + 2.07e9T^{2} \)
79 \( 1 + 9.29e4T + 3.07e9T^{2} \)
83 \( 1 - 6.37e4T + 3.93e9T^{2} \)
89 \( 1 - 1.02e5T + 5.58e9T^{2} \)
97 \( 1 - 1.68e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.387717883170803795640249365574, −9.074185450060133436116798162339, −7.67284553781467461803110696209, −6.68015199049403576566212348992, −5.96342813973122815780527136575, −5.36033802716560963953049819738, −4.21773441132992560127764495585, −3.03525348994828925075713239569, −1.61291772081948979295399985623, −0.74829725557683630368287717227, 0.74829725557683630368287717227, 1.61291772081948979295399985623, 3.03525348994828925075713239569, 4.21773441132992560127764495585, 5.36033802716560963953049819738, 5.96342813973122815780527136575, 6.68015199049403576566212348992, 7.67284553781467461803110696209, 9.074185450060133436116798162339, 9.387717883170803795640249365574

Graph of the $Z$-function along the critical line