L(s) = 1 | − 3·3-s − 5-s + 6·9-s + 11-s + 2·13-s + 3·15-s + 3·17-s − 5·19-s + 3·23-s − 4·25-s − 9·27-s − 6·29-s + 31-s − 3·33-s − 5·37-s − 6·39-s − 10·41-s + 4·43-s − 6·45-s − 47-s − 9·51-s − 9·53-s − 55-s + 15·57-s − 3·59-s + 3·61-s − 2·65-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.447·5-s + 2·9-s + 0.301·11-s + 0.554·13-s + 0.774·15-s + 0.727·17-s − 1.14·19-s + 0.625·23-s − 4/5·25-s − 1.73·27-s − 1.11·29-s + 0.179·31-s − 0.522·33-s − 0.821·37-s − 0.960·39-s − 1.56·41-s + 0.609·43-s − 0.894·45-s − 0.145·47-s − 1.26·51-s − 1.23·53-s − 0.134·55-s + 1.98·57-s − 0.390·59-s + 0.384·61-s − 0.248·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 \) | |
| 7 | \( 1 \) | |
good | 3 | \( 1 + p T + p T^{2} \) | 1.3.d |
| 5 | \( 1 + T + p T^{2} \) | 1.5.b |
| 11 | \( 1 - T + p T^{2} \) | 1.11.ab |
| 13 | \( 1 - 2 T + p T^{2} \) | 1.13.ac |
| 17 | \( 1 - 3 T + p T^{2} \) | 1.17.ad |
| 19 | \( 1 + 5 T + p T^{2} \) | 1.19.f |
| 23 | \( 1 - 3 T + p T^{2} \) | 1.23.ad |
| 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g |
| 31 | \( 1 - T + p T^{2} \) | 1.31.ab |
| 37 | \( 1 + 5 T + p T^{2} \) | 1.37.f |
| 41 | \( 1 + 10 T + p T^{2} \) | 1.41.k |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae |
| 47 | \( 1 + T + p T^{2} \) | 1.47.b |
| 53 | \( 1 + 9 T + p T^{2} \) | 1.53.j |
| 59 | \( 1 + 3 T + p T^{2} \) | 1.59.d |
| 61 | \( 1 - 3 T + p T^{2} \) | 1.61.ad |
| 67 | \( 1 + 11 T + p T^{2} \) | 1.67.l |
| 71 | \( 1 + 16 T + p T^{2} \) | 1.71.q |
| 73 | \( 1 - 7 T + p T^{2} \) | 1.73.ah |
| 79 | \( 1 - 11 T + p T^{2} \) | 1.79.al |
| 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae |
| 89 | \( 1 + 9 T + p T^{2} \) | 1.89.j |
| 97 | \( 1 - 6 T + p T^{2} \) | 1.97.ag |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20620662916625970895775928499, −9.142198290542801682490264433147, −7.998191948773462898561718693054, −7.02672400426876020638909964010, −6.25344459015630410317755022398, −5.50408861827812945615920971927, −4.56048692345506519254695272009, −3.60208456561023604215078140332, −1.52606776117536691060853107483, 0,
1.52606776117536691060853107483, 3.60208456561023604215078140332, 4.56048692345506519254695272009, 5.50408861827812945615920971927, 6.25344459015630410317755022398, 7.02672400426876020638909964010, 7.998191948773462898561718693054, 9.142198290542801682490264433147, 10.20620662916625970895775928499