L(s) = 1 | − 3·9-s − 4·11-s − 8·23-s − 5·25-s + 2·29-s − 6·37-s + 12·43-s − 10·53-s − 4·67-s − 16·71-s − 8·79-s + 9·81-s + 12·99-s + 20·107-s + 18·109-s + 2·113-s + ⋯ |
L(s) = 1 | − 9-s − 1.20·11-s − 1.66·23-s − 25-s + 0.371·29-s − 0.986·37-s + 1.82·43-s − 1.37·53-s − 0.488·67-s − 1.89·71-s − 0.900·79-s + 81-s + 1.20·99-s + 1.93·107-s + 1.72·109-s + 0.188·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 16 T + p T^{2} \) |
| 73 | \( 1 + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.986083473283480406143801341179, −8.949658951219617610034987207596, −8.102431901520003899942818252728, −7.49516008990432878175521888778, −6.11693101856965229843525121209, −5.56423915340359066406328786043, −4.41080963086329800320550064306, −3.16972888563709012933599163579, −2.12708221183439266543513013448, 0,
2.12708221183439266543513013448, 3.16972888563709012933599163579, 4.41080963086329800320550064306, 5.56423915340359066406328786043, 6.11693101856965229843525121209, 7.49516008990432878175521888778, 8.102431901520003899942818252728, 8.949658951219617610034987207596, 9.986083473283480406143801341179